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Abstract

In the present paper we apply the method of the Lagrangian multiplier, previously proposed to evaluate energy barriers in small
magnetic particles as multispin systems, for different nanosized magnetic elements, such as magnetic grains, dots and nanowires. We
show that the method is capable to determine the energy barriers corresponding to highly non-homogeneous magnetization states. Three
examples: a micromagnetically discretized Fe cylindrical dot/nanowire, FePt atomistic grain and a nanocomposite grain with different

exchange coupling strengths are considered.
© 2007 Elsevier B.V. All rights reserved.
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Evaluation of energy barriers in nano-sized magnetic
elements is important from the point of view of determina-
tion of long-time thermal stability of their magnetization.
This is especially relevant in our days for magnetic
recording applications, for example, to determine the
energy barriers of high-anisotropy magnetic grains for
recording media of the next generation [1]. Numerical
evaluation of the energy barrier should be done in a
multidimensional space and is a difficult problem, espe-
cially when collective reversal modes are involved. Up to
now, only the use of the elastic nudged band method has
been extensively studied in nano-sized magnetic systems on
the basis of the micromagnetic description [1,2]. Here, we
report the use of the method of the Lagrangian multiplier
to determine energy barriers of simple magnetic elements
such as nano-sized magnetic grains, particles, dots,
wires, etc.

In systems mentioned above the occurrence of only one
or several reversal modes could be expected. Consequently,
the multidimensional space could be parameterized as a
function of one “‘reaction coordinate”, as, for example,
average magnetization vector. This is done by minimizing
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the energy of the system with an additional constraint.
Previously, this method has been proposed and successfully
applied to determine the effective energy landscape and
energy barriers of small magnetic particles with surface
anisotropy [3]. It should be noted here that the implemen-
tation of the method on the basis of existing codes with
energy minimization, using, for example the Landau-—
Lifshitz—Gilbert (LLG) equation integration is much
simpler than that of the previously reported calculations
of energy barriers using the nudged elastic band method.
We have implemented the method on the basis of both
micromagnetic and atomistic formalisms.

The method consists in projection of multidimensional
energy landscape on one or several coordinates by guessing
the character of the possible reversal mode and, therefore,
choosing an appropriate constraint. For example, in the
case of small particles with surface anisotropy, dominated
by the exchange interactions [3], one can expect the type of
the behavior corresponding to the rotation of the particle
macrospin as the whole, so that the multidimensional space
is “projected” into one unit magnetization vector

7;1)0(00,900). This is done by adding to the total energy
N = .
one more term, —N 1 (m — m), where A is the Lagran-

gian multiplier, 717 is the particle magnetization direction:
m=>.5;/|>.75:, 5, is the individual local magnetic
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spins and N is the number of spins inside the particle. This
term produces an additional field and, therefore, the total

magnetization is biased in the direction 710(00, ¢,)- To find
the conditional minimum, the LLG equation of motion
without the precessional term is solved.

—
dSl'

dt

= —{X[_S),' X [_S), X Z)l]], (1)

where o is the formal damping parameter, 7,- = —0E/ 05
is the local field and E is the total system magnetic energy
augmented with the Lagrangian multiplier term. To this
equations one should add also three equations for the

Lagrangian multiplier components: 7 =0F /67 The
stationary points found in this approach are also the
stationary points of the original Hamiltonian. However, if
the system has many metastable states, only part of these
points compatible with the behavior assumed by the biased
direction would be found. The method can produce highly
non-collinear multidimensional stationary points.

The method allows to calculate the effective energy
landscape for nanoelements in terms of the biased direction
71)0(00,%) which provides a useful illustration of the
configurational anisotropy governed by the shape of the
nanoelement. In the following we present several examples
of energy barrier calculation in magnetic grains (dots,
wires).

The saddle point could be found as the one of the
effective energy landscape. Alternatively, we notice that
the stationary points coincide with the condition:
[1 x W] =0, and, therefore, they can be _found by
minimizing  the iunctional F(0o, p) = I[ 1 (0o, pg)x
71)(00,%)“, where 4 (0o, @) is found as a result of the
conditional minimization procedure, described above. The
gradients of this functional, which are necessary for the
minimization procedure, should be evaluated numerically.
If a direct minimization procedure (instead of the LLG
equation integrgt)ion) is used, the stationary point would
satisfy directly 4 = 0 condition.

To illustrate the performance of the method, we have
calculated the energy barriers of rectangular magnetic
grains as a function of their elongation. The general idea of
this calculations is the same as in Ref. [4], however, the
high-anisotropy grain was implemented on the basis of
atomistic calculations with correct lattice structure and the
Heisenberg exchange rather than finite element micromag-
netic simulations. The parameters used for calculations
were that corresponding to doped FePt: the anisotropy
value K =2 x 10" erg/cm® and the saturation magnetiza-
tion M = 1100emu/cm?, the Heisenberg exchange con-
stant J =7.7x 10 "erg, the fct lattice parameters
a=b=0272nm and ¢=0.385nm. Fig. 1 represents
energy barriers of an isolated grain with basis size S =
6nm x 6 nm as a function of elongation L. The configura-
tions of the saddle points are presented in Fig. 2(a and b).
Varying the grain height, we have observed how the
configuration of the saddle point changes from that

440 =
400 { —=— Lagrangian method //
fffff KV
S — 4S[A(K+=M2)"
320 - L7
~ 2801 - wm————m
|_§ 240 BT
& 200 /ijg prirardbobotbotbt, o Lemm
-~ 7 —o—L=10
., 160 E 200 _0-0~o__ ——L=24 :z
LUl g & 160
120 /_/ 2 120
80" W e
40
40 0
0.0 02 0.4 0.6 0.8 1.0
o/n
O T T T T T T T T T T T T T T T

T T T T T T T
4 6 8 10 12 14 16 18 20 22 24 26

L(nm)

Fig. 1. Energy barriers vs elongation of an isolated grain of FePt with a
basis size of S =6nm x 6nm. Inset shows the effective energy as a
function of the polar coordinate 6.

corresponding to coherent rotation (the energy barrier
value proportional to system volume) to the one related to
the domain wall propagation (the energy barrier value
independent of the system volume), which energy barrier is
approximately the domain wall energy Epw = 4S[A(K +
an)]l/ 2 including the ideal shape anisotropy term of an
infinite wire. The critical system size for which the
propagation rather than that rotation mode occurs was
determined in this case as 12 nm.

The second example (Fig. 3) represents a cylindrical
magnetic grain (dot or wire), implemented on a basis of full
micromagnetic model (discretization size 1 nm) with para-
meters corresponding to Fe and with cubic anisotropy (two
of the easy axes in XY plane), K =50000J/m?, the
exchange parameter 4 = 8.3 x 10712J /m and the satura-
tion magnetization value M =2.15T. The number of
values of 0 and ¢ used in the calculation was 51 x 51. To
evaluate the magnetostatic energy, the DADI method [5]
has been used. It is clearly seen that in this case there is a
competition between magnetocrystalline and shape aniso-
tropies: the shape anisotropy is responsible for the
increment of the energy barrier for the magnetization
switching along z-direction. The value of this barrier is
plotted in Fig. 4 as a function of the particle elongation. It
is normalized to the effective anisotropy value K¢ multi-
plied by the volume V. The effective anisotropy value has
been evaluated for a single-domain particle with intrinsic
cubic anisotropy and uniaxial shape anisotropy

Esp = —3uoMim? — IK(m5, + m} + m?), ®)
calculating analytically the energy barrier K = AEsp/ V.
This gives the maximum possible energy barrier corre-
sponding to the coherent reversal as 4.7 x 10°J/m>. In
longer wires energy barriers corresponds to that of the
domain wall nucleation and, therefore, its value saturates
as a function of the wire length.
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