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A rigorous treatment of nucleation modes spectrum in micromagnetics
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Abstract

The nucleation problem for an anisotropic ellipsoidal magnetic particle is studied in the framework of micromagnetics. The stability of

a spatially uniform micromagnetic equilibrium is connected to the positive definitiveness of a quadratic functional which is associated to

an appropriate self-adjoint integro-differential operator. The spectrum of this operator is studied rigorously by using the theory of

continuous and weakly coercive bilinear forms.
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1. Introduction

In general terms, the problem of nucleation in magnetic
bodies consists in the study of the stability of a magnetiza-
tion equilibrium when the amplitude of the external field is
changed. The main goal of the analysis is to compute the
critical values of the applied field such that the magnetiza-
tion equilibrium becomes unstable. In this paper, we will
limit ourselves to the classical case of uniformly magnetized
particles. This case has been studied in detail by using
micromagnetics and it has been shown that depending on
the geometry of the particle, and on the type and strength
of anisotropy, one can observe various magnetization
instability spatial patterns (uniform rotation, curling,
buckling, etc.) [1–3] which are usually referred to as
‘‘nucleation modes’’. The problem of determining these
modes can be formulated as an eigenvalue problem and
most studies have been focused on the determination of
special eigenvalues and eigenfunctions. In this paper, on
the other hand, we prove rigorous results on the general
properties of the nucleation modes spectrum. The main
results are that the nucleation spectrum is discrete in nature

and nucleations modes form a complete set of orthogonal
functions.

2. Formal theory of micromagnetic equilibria and stability

We start our discussion by recalling basic facts about
micromagnetic theory. This theory is based on the
micromagnetic Gibbs free energy functional associated
with the magnetic body. In dimensionless form, this
functional can be written as

G½m� ¼

Z
O

1

2
ðrmÞ2 þ jðmÞ

�

�ha �m�
1

2
hM½m� �m

�
dV , ð1Þ

where m ¼ mðrÞ is the magnetization vector field, O is the
region occupied by the body, j : R3! R is a function
representing the anisotropy energy, ðrmÞ2 ¼ jgradmxj

2 þ

jgradmyj
2 þ jgradmzj

2 (where j � j denotes the usual Eu-
clidean norm), and ha is a given external applied field. The
vector field hM½m� is the magnetostatic field generated by
the magnetized body and it can be expressed as
hM½m� ¼ graddivc½m�, where

c½m� ¼
1

4p

Z
O

mðr0Þ

jr� r0j
dV ðr0Þ. (2)
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The fundamental assumption of micromagnetic theory is
that the only admissible magnetization vector fields are
those that fulfill the following constraint:

jmðrÞj ¼ 1 8r 2 O. (3)

Micromagnetic equilibria correspond to vector fields m
which fulfill the constraint (3) and are such that the first
derivative of G½m� vanishes. Stability of equilibria can be
then studied by considering higher order derivatives. To
compute these derivatives, we have first to define the class
of admissible variations of vector field compatible with the
constraint (3). In this respect, we notice that variations
dmðrÞ of mðrÞ such that jmðrÞ þ dmðrÞj ¼ 1 can be obtained
by performing a rotation of mðrÞ at each spatial location.
The most general rotation can be generated by using the
3� 3 matrix Lð!Þ such that Lð!Þ � u ¼ ! � u, and con-
sidering the matrix exponential expðLð!ÞÞ. Indeed, the
matrix product expðLð!ÞÞ �m produces a rotation of m of
an angle 0 ¼ j!j around the axis identified by the unit
vector !=j!j (j � j denotes the R3 Euclidean norm). Thus,
the admissible variations are given by mðrÞ þ dmðrÞ ¼
expðLð!ðrÞÞÞ �mðrÞ. With this definition of admissible
variations we can compute the first derivative of G½m�
around a given vector field m0. By using appropriate
algebraic manipulations of Eqs. (1)–(3), one obtains the
following expression:

lim
�!0

1

�
fG½expðLð�!ÞÞ �m0� � G½m0�g

¼ �ðm0 � heff ½m0�; !ÞO þ

Z
qO

m�
qm

qn
� ! dS, ð4Þ

where heff ½m� is the effective field and it is given by

heff ½m� ¼ Dmþ
qj
qm
þ hM½m� þ ha, (5)

D denotes the Laplacian operator, and ðu;wÞO ¼
R
O uðrÞ �

wðrÞdV is the usual L2 scalar product, qj=qm is the
gradient of j with respect to m, and qO is the boundary of
O. From Eq. (4), and using the arbitrariness of !ðrÞ, we can
conclude that micromagnetic equilibria are given by the
conditions (Brown’s equations [1]):

m0 � heff ½m0� ¼ 0 in O;
qm0

qn
¼ 0 on qO, (6)

where n is the unit normal to qO. Eqs. (6) have to be
complemented by the constraint in Eq. (3).

We study now the nucleation problem [1] for uniformly
magnetized particles. In this respect, we make the following
assumptions: (a) O is an ellipsoid with principal axes along
the Cartesian unit vectors ðex; ey; ezÞ, respectively; (b) the
anisotropy is uniaxial with jðmÞ ¼ �ðk=2Þm2

z (k is the
anisotropy constant and ez is the easy axis); (c) the applied
field is spatially uniform and ha ¼ hazez. In this case, one
has that m0 ¼ ez is always a spatially uniform equilibrium.
This is consequence of the fact that hM½ez� ¼ �Nzez, where
Nz is z-demagnetizing factor of the ellipsoid, and thus
heff ½ez� ¼ h0ez, where h0 ¼ ðk�Nz þ hazÞ.

We want now to study the stability of the equilibrium ez.
To this end, by using suitable algebraic manipulations, one
can derive the following expansion:

G½expðLð�!ÞÞ � ez� ¼ G½ez� þ
�2

2
fa½v; v�

þ h0ðv; vÞOg þ Oð�3Þ, ð7Þ

where v ¼ ! � ez (thus v � ez ¼ 0), and a½u;w� is the positive
definite symmetric bilinear form given by

a½u;w�:¼
X

h

ðgrad uh; gradwhÞO � ðgraddivc½u�;wÞO. (8)

It is important to underline that in Eq. (7) the vector field v
has zero component along ez. This is an important
constraint of our problem which has to be taken into
account. In this respect, in the following, we will tacitly
assume that all vector fields denoted by v, u, and w are in
the subspace of vector field which have zero z-components.
This observation applies also to Eq. (8). The symmetry of
the second term in Eq. (8) can be demonstrated by using
the magnetostatic reciprocity theorem [1] which, in our
notations, reads

ðgraddivc½u�;wÞO ¼ ðhM½u�;wÞO ¼ ðu; hM½w�ÞO. (9)

The positive nature of a½u; u� is obtained by the positivity of
magnetostatic energy:

�ðgraddivc½u�; uÞO ¼ �ðhM½u�; uÞO ¼

Z
R3
jhM½u�j

2 dV ,

(10)

and from the fact that constant vector field (i.e. with zero
gradient) have always a strictly positive magnetostatic
energy.
By using the thermodynamic principle that stable

equilibria are minima of the free energy of the system,
one can say that the stability of ez is related to the positive
definitiveness of the quadratic form fa½v; v� þ h0ðv; vÞOg (see
Eq. (7)) and this is related to the value of the scalar h0.
Indeed, for sufficiently negative values of h0 ¼ ðk�Nz þ

hazÞ and thus for appropriately low or negative values of haz

the equilibrium ez becomes unstable. The precise value of
haz which produce instability can be determined by
studying the spectrum of the self-adjoint operator asso-
ciated to the symmetric form a½u;w�. Indeed, by using
integration by parts one can prove that a½u;w� ¼
ðC½u�;wÞO þ

R
qO w � qu=qndS, where

C½u�:¼� Du�P?hM½u�, (11)

and P?ðhÞ ¼ hxex þ hyey. The operator in Eq. (11),
complemented by the boundary condition qu=qn ¼ 0 on
qO, is a self-adjoint operator with respect to the usual L2

scalar product (in the subspace of vector fields with zero
z-component). As a consequence of the discussion above,
one can conclude that the operator above has real and
positive eigenvalues. Further conclusions on the spectrum
of this operator requires more careful reasonings which are
reported below.
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