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Abstract

The use of fast multipole method (FMM) in the solution of a magnetostatic problem is presented. The magnetostatic solution strategy

is based on finite formulation of electromagnetic field coupled with an integral formulation for the definition of boundary conditions on

the external surface of the unstructured mesh.

Due to the hypothesis of micromagnetic problem, the resulting matrix structure is sparse and integral terms are only on the RHS.

Magnetic surface charge is used as source of these integral terms and is localized on the faces between tetrahedra. The computation of the

integral terms can be performed by analytical formulas for the near field contributes and by FMM for far field ones.
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1. Hybrid magnetostatic solution

The use of an hybrid form of magnetostatic computation
based on finite formulation of electromagnetic fields
(FFEF), more often called cell method, and on a Green
function applied to magnetization sources, has been
presented [1,2]. In this formulation an integral boundary
condition on the exterior surface of the mesh is related to
the magnetization sources. Integral boundary conditions
are used to terminate Ampere’s law for all boundary edges
expressing external magnetic field circulation as a potential
difference evaluated by the Green function integrals at the
center of each boundary face. Under the micromagnetic
hypothesis, the magnetized region has permeability m0 and,
for each time step of the dynamic analysis, magnetization
distribution is supposed to be known.

The absence of magnetic polarization, that is of a
magnetization-dependent field like M ¼ wH, where w is the
magnetic susceptibility, eliminates magnetization contribu-
tion depending on configuration variables like magnetic
vector potential. Thus all integral terms are known and can
be carried on to the RHS. Another consequence of this fact
is that there are no integral relations between matrix rows

and thus matrix structure remains sparse as in the usual
formulation of the cell method.
This numerical approach has been already applied to

demagnetizing field computation on a structured hexahe-
dral grid [3] and is now applied to a tetrahedral mesh.
Magnetization is considered to be uniform in each
tetrahedron so that magnetic sources are located only on
triangular faces. The computation of magnetization-
dependent integrals is performed by fully analytical
formulas, nevertheless this phase is one of the most time-
consuming parts of each magnetostatic solution. From
these considerations stem the idea of using fast multipole
method (FMM) to speed up the integral boundary
conditions computation.

2. Fast multipole scheme for RHS computation

2.1. Multipole expansion

Magnetic scalar potential is computed by an integral
operator applied to magnetization-dependent sources. The
scalar potential c is expressed by

cðrÞ ¼
Z
O
rMGðr; r0ÞdOM, (1)
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where G ¼ 1=ð4pjr� r0jÞ is the usual Green’s function of
three-dimensional static problems and rM is the magnetic
charge density obtained as rM ¼ �rM�rSM, and OM is
the volume domain containing the magnetization. This
term can be evaluated by considering two contributions to
the potential: one due to near field and one due to the far
field c ¼ cnear+cfar. The first term [2] can be calculated by
means of Eq. (1), while the last one can be obtained by
resorting to an expansion in multipoles [4]:

cfarðr;W;jÞ ¼
Xl

l¼0

Xl

m¼�l

Mm
l

rnþ1
Y m

l ðW;jÞ, (2)

with

Mm
l ¼

XN

i¼1

qir
l
iY
�m
l ðWi;jiÞ, (3)

where ri, Wi, and ji are spherical coordinates of ith charge
qi ¼ siAi, and r, W, and j are the coordinates of field point.
Y m

l are the normalized spherical harmonics of degree l and
order m given by the following:

Y m
l ðy;jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!

ðl þmÞ!

s
Pm

l ðcos WÞe
jmj, (4)

with the condition

Y�m
l ðy;jÞ ¼ ð�1Þ

mY mn

l ðy;jÞ, (5)

where Pm
l ðcos WÞ are the Legendre polynomials of degree l

and order m [4].

2.2. O(N log(N)) fast multipole scheme

Several fast multipole schemes have been developed in
order to increase the computational efficiency of the
method [5–8]. All these methods are based on the same
basic principle: in order to make systematic use of
multipole expansions, a hierarchy of boxes which refines
the computational domain into smaller and smaller regions
will be defined. At refinement level 0, the whole computa-
tional domain will be considered. Refinement level k+1
is obtained recursively from level k by subdivision of
each box into eight equal parts. This yields a natural
tree structure, where the eight boxes at the k+1 level,
obtained by subdivision of a box at level k, are considered
its children.

By starting from the generated tree it is possible, for all
sources which are ‘‘sufficiently far’’ from a given field
point, using the multipole expansion, to summarize their
total interaction. According to error estimation, a con-
venient definition of ‘‘sufficiently far’’ (or ‘‘well separated’’)
is a relationship between the diagonal of each cube and the
distance of field point from the center of the considered
cube: r0o2

ffiffiffiffiffiffi
ð3Þ

p
w, where r0 is the distance of field point

from the local origin and w the length of the edge of the
cube. The first algorithm consists in evaluating the far field
at all field points by considering the contribution of each

cube well separated from them. The cost of this algorithm
is approximately Nf logNs, where Nf is the number of
evaluation points and Ns the number of the sources.
Generally this approach is not enough to improve the
computational efficiency and multilevel algorithms are
introduced [7]; in the present formulation, the number of
field points, located only on the surface of the active
volumes, is much lesser than the number of sources located
in the whole active volumes, therefore only the O(N logN)
algorithm has been considered.

2.3. Data structures

In this section a data structure based on octree [8]
subdivision of the domain combined with a bit interleaving

techniques [9] will be described. This technique allows an
efficient indexing of the cube in the hierarchical tree and
then a robust and fast method to find relationship between
cubes at each level of the octree. Briefly some characteristic
aspects of the method will be outlined: considering a box at
level l the whole number of children of this box is 8,
numbered from 0 to 7, therefore the index of one of these
boxes is unique and it is given by the following relation-
ship:

IDXðn; lÞ ¼ ðN1;N2; . . . ;NjÞ, (6)

where l is the considered level, Nj the index of the box at
level j given by Nj ¼ 0, y, 7 with j ¼ 1, y, l and n is the
global number of the cubes at level l with n ¼ N1(8)

(l�1)+
N2(8)

(l�2)+?+Nl�1(8)+Nl. For example, by referring to
the construction shown in Fig. 1,the cube N1 ¼ 0 and
N2 ¼ 5 at level 2 is the cube n ¼ 5 of the level 2 and so on;
in this way the uniqueness of the indexing is guaranteed. In
this way it is possible to obtain the father box (PRT) for
each pair (n, l)by means of

PRTðn; l � 1Þ ¼ ðN1;N2; . . . ;Nj0 Þ, (7)

with j0 ¼ 1, y, l�1. From the previous statement it is
possible to compute all the children (CHD) at level l+1:

CHDðn; l þ 1Þ ¼ ðN1;N2; . . . ;Njþ1Þ, (8)

where Nj+1 ¼ 0, y, 7. In other words the use of octree
makes obtaining parent and children indices very con-
venient. Indeed the above operations are nothing but shift
operations in the bit representation of n. Performing a right
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Fig. 1. Octree subdivision of the domain and cube hierarchy.
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