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Abstract

This article introduces a magnetodynamic vector hysteresis model for predicting alternating and rotational iron losses. The model is

based on the well-known Mayergoyz model, whereas the identification of the proposed model requires no further modification of the

measured scalar data. The model can be used for a wide variety of frequencies, enhancing its generality and use. A 1D finite-element

formulation is performed to investigate the properties of the model and its ability to reproduce the experimental data. The calculated

rotational losses and the modeled dynamic loops have been found to be in accordance with what has been observed in measurement.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since numerical methods became available and easily
applied in the computer era, there has been a rapidly
growing interest to consider accurate modeling of the core
loss phenomena, including hysteresis, eddy current, and
excess losses, which all lead to the magnetodynamic effects
[1–4]. The complex microscopic behavior of these phenom-
ena is hardly understood by the engineering community
and usually their macroscopic modeling is of more interest
to this community.

The eddy current in the lamination is intrinsically a 3D
problem but it can be reduced to 2D by using another 1D
model for the lamination depth as was proposed by few
researchers [5,6]. In this respect, modeling magnetody-
namic effects of ferromagnetic steel sheets has been, and
can be, done in various ways. The simplest, perhaps, is to
solve the diffusion equation (resulting from Maxwell
equations) assuming constant reluctivity along the lamina-
tion depth. Such an approach can easily lead to under-
or overestimated results [6]. An improved approach would
independently model the excess and hysteresis losses,
and, then, add them to the eddy-current loss resulting

from solving the diffusion equation using single-valued
reluctivity. Yet, this approach is far from completion
because the core loss phenomena are interdependent
and cannot be simply kept apart. The most accurate,
impeccable, and systematic way achieved by far solves the
diffusion equation numerically applying the hysteretic
nonlinearity directly in the lamination [1–4]. However,
such a method has been often applied for ‘‘alternating’’
fields, whereas modeling magnetodynamic losses under
‘‘rotational’’ excitations has not yet been commonly
investigated [7–9].
Although the ‘‘rotational eddy-current’’ phenomenon

has been mentioned quite a few times in literature, it has
not nevertheless been extensively studied. Only few
researchers, most of whom used analytical methods, have
given it considerable importance [10]. It is no surprise that
the reason may be attributed to the difficulties surrounding
the understanding of the phenomenon or, perhaps, the lack
of a general vector model that can rigorously describe the
relation between the magnetic field strength H and the
magnetic flux density B at varied frequencies. As it is
known that even at a given fixed frequency (e.g., rotational
static hysteresis), modeling the vector relation between H
and B is still considered to be a new subject with many
speculations, making the modeling of the rotational eddy-
current loss a problem of appreciated difficulties.

ARTICLE IN PRESS

www.elsevier.com/locate/physb

0921-4526/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.physb.2007.08.067

�Corresponding author. Tel.: +358 9 451 2392; fax: +358 9 451 2991.

E-mail address: emad.dlala@tkk.fi (E. Dlala).

www.elsevier.com/locate/physb
dx.doi.org/10.1016/j.physb.2007.08.067
mailto:emad.dlala@tkk.fi


The generalized vector hysteresis model introduced by
Mayergoyz [11] for static fields is a prevailing model
because it can well represent the B–H behavior. In this
article, the authors propose a modification to the general-
ized vector hysteresis model [11] in order to account for the
magnetodynamic rotational quantities. The identification
of the proposed model is considered in the article and
proven to be simple. A time-stepping 1D finite-element
procedure is carried out to solve the magnetodynamic
problem under rotational field excitations in which
rotational losses are modeled, separated, and analyzed.

2. Magnetodynamic vector hysteresis model

The focus of this article is on developing an isotropic
magnetodynamic vector hysteresis model and its integration
into 1D finite-element method while the extension of the
analysis to 2D is omitted here and remains as a future pursuit.
The authors prefer to write the magnetic field quantities of
the 1D model in small letters instead of capital letters, which
are commonly adopted for 2D problems. The 1D and 2D
models are related because the time-varying components of
the flux density of the 2D model (BxðtÞ and ByðtÞ) are used to
set the boundary conditions of the 1D model [5].

The nonlinear 1D magnetodynamic problem can be
formulated using the fixed-point iteration as

r � nfpðr � aÞ þ s
qa

qt
¼ �r�m, (1)

where s is the conductivity of the ferromagnetic material and
the residual term m is associated with the nonlinearity. Here,
a is the magnetic vector potential, which normally has the x

and y components perpendicular to the lamination depth z.
If one assumes that the second term in Eq. (1) is

negligible (sqða=qtÞ ¼ 0), then the isotropic vector hyster-
esis relation between H and B can be simply characterized
by the generalized vector hysteresis model [11] in its
inverted version [12] without the need of solving the
nonlinear problem (1). Considering N directions along eW,
the output H is directly calculated as

H ¼
XN

i¼1

eWi
F stðBWi

Þ ¼
XN

i¼1

eWi
HWi

, (2)

where BW ¼ Bx cos
1=wðWÞ þ By sin

1=w
ðWÞ, and w is a coeffi-

cient associated with the rotational loss and can be
experimentally identified.

On the other hand, if the ‘‘magnetodynamic’’ vector
hysteresis property is taken into account (sqa=qta0), the
static, hysteretic function F st must be replaced by a dynamic,
hysteretic function Fdy and Eq. (1) must be solved. However,
the dynamic function Fdy which involves the solution of Eq.
(1) renders the vector model difficult to identify. Therefore,
the authors propose to modify Eq. (2) as follows:

H ¼
XN

i¼1

eWi

FdyðbWi
Þ

Ng ¼
1

Ng

XN

i¼1

eWi
hWi

, (3)

where g is a parameter characterizing the magnetodynamic
vector hysteresis and can be identified so that the output of
the magnetodynamic vector model magnetized along one
direction is equal to the output of the magnetodynamic
scalar model. The natural simplification in Eq. (3) lies in two
aspects. First, the model utilizes the scalar hysteresis data
directly without additional modification, which is not the
case when using model (2). Second, g can be identified to be
unique for a wide range of frequencies. This means that
model (2) is no longer needed even in static field conditions.
The nonlinear problem in the lamination is linearized by

defining mWðz; tÞ ¼ hWðz; tÞ � nfpbWðz; tÞ, where nfp is a con-
stant to be chosen appropriately. In the lamination, the
dynamic, hysteretic relation is described in the W direction
by a viscosity-based model [4,13]:

hWðz; tÞ ¼ F stðbWðz; tÞÞ �
1

R

dbWðz; tÞ

dt

����
����
1=p

. (4)

The first term of Eq. (4) can be, in principle, computed by
any static hysteresis model. In this work, the history-
dependent model [14], which employs a static family of
first-order reversal curves, has been used. The second term
of Eq. (4) represents the excess field through the time delay
of the magnetic flux behind the field strength. The field
strength on the surface hWðz ¼ d=2; tÞ is being used for
computing the output of the vector model (3). The dynamic
magnetic resistivity R is a material property and the
constant p is related to the dependency of the excess loss on
the frequency. The signs � are switched according to
whether the field is increasing or decreasing.
Eq. (1) is discretized using first-order finite-element

method and solved by the Crank–Nicholson time-stepping
scheme. N system of equations for aW result and are
strongly coupled through the magnetodynamic vector
hysteresis model. Since the components aW are symmetric
around the plane z ¼ 0, only the segment ½0; d=2�, instead
of ½�d=2; d=2�, is needed to be discretized in the solution of
Eq. (1), saving half of the computation time. The 1D model
is subjected to a known magnetic flux per unit length
/ ¼ Bd. Thus, the magnetic vector potential on the
boundary is computed from

aW z ¼
d

2

� �
¼

1

2
fW ¼

1

2
bWd ¼

d

2
ðBx cos

1=wðWÞ þ By sin
1=w
ðWÞÞ,

aWðz ¼ 0Þ ¼ 0. ð5Þ

3. Application of the model

In order to identify the magnetodynamic vector model,
the characteristics of a soft magnetic steel sheet of
thickness, d ¼ 0:5mm, conductivity, s ¼ 2:92� 106 S=m,
and coercivity, Hc ¼ 57A=m, have been experimentally
obtained. A set of dynamic B–H loops as well as their
respective iron losses have been measured in the existence
of alternating unidirectional fields for various frequencies
at different flux densities. The measurements were made

ARTICLE IN PRESS
E. Dlala et al. / Physica B 403 (2008) 428–432 429



Download English Version:

https://daneshyari.com/en/article/1815197

Download Persian Version:

https://daneshyari.com/article/1815197

Daneshyari.com

https://daneshyari.com/en/article/1815197
https://daneshyari.com/article/1815197
https://daneshyari.com

