

Physica B 403 (2008) 428-432

Magnetodynamic vector hysteresis model of ferromagnetic steel laminations

Emad Dlala*, Anouar Belahcen, Antero Arkkio

Laboratory of Electromechanics, Helsinki University of Technology (TKK), P.O. Box 3000, Otakaari 5 A, FI-02015 TKK, Espoo, Finland

Abstract

This article introduces a magnetodynamic vector hysteresis model for predicting alternating and rotational iron losses. The model is based on the well-known Mayergoyz model, whereas the identification of the proposed model requires no further modification of the measured scalar data. The model can be used for a wide variety of frequencies, enhancing its generality and use. A 1D finite-element formulation is performed to investigate the properties of the model and its ability to reproduce the experimental data. The calculated rotational losses and the modeled dynamic loops have been found to be in accordance with what has been observed in measurement. © 2007 Elsevier B.V. All rights reserved.

Keywords: Vector hysteresis; Magnetodynamic modeling; Time-stepping finite-element method; Rotational loss separation

1. Introduction

Since numerical methods became available and easily applied in the computer era, there has been a rapidly growing interest to consider accurate modeling of the core loss phenomena, including hysteresis, eddy current, and excess losses, which all lead to the *magnetodynamic* effects [1–4]. The complex microscopic behavior of these phenomena is hardly understood by the engineering community and usually their macroscopic modeling is of more interest to this community.

The eddy current in the lamination is intrinsically a 3D problem but it can be reduced to 2D by using another 1D model for the lamination depth as was proposed by few researchers [5,6]. In this respect, modeling magnetodynamic effects of ferromagnetic steel sheets has been, and can be, done in various ways. The simplest, perhaps, is to solve the diffusion equation (resulting from Maxwell equations) assuming constant reluctivity along the lamination depth. Such an approach can easily lead to underor overestimated results [6]. An improved approach would independently model the excess and hysteresis losses, and, then, add them to the eddy-current loss resulting

from solving the diffusion equation using single-valued reluctivity. Yet, this approach is far from completion because the core loss phenomena are interdependent and cannot be simply kept apart. The most accurate, impeccable, and systematic way achieved by far solves the diffusion equation numerically applying the hysteretic nonlinearity directly in the lamination [1–4]. However, such a method has been often applied for "alternating" fields, whereas modeling magnetodynamic losses under "rotational" excitations has not yet been commonly investigated [7–9].

Although the "rotational eddy-current" phenomenon has been mentioned quite a few times in literature, it has not nevertheless been extensively studied. Only few researchers, most of whom used analytical methods, have given it considerable importance [10]. It is no surprise that the reason may be attributed to the difficulties surrounding the understanding of the phenomenon or, perhaps, the lack of a general vector model that can rigorously describe the relation between the magnetic field strength \boldsymbol{H} and the magnetic flux density \boldsymbol{B} at varied frequencies. As it is known that even at a given fixed frequency (e.g., rotational static hysteresis), modeling the vector relation between \boldsymbol{H} and \boldsymbol{B} is still considered to be a new subject with many speculations, making the modeling of the rotational eddy-current loss a problem of appreciated difficulties.

^{*}Corresponding author. Tel.: +35894512392; fax: +35894512991. *E-mail address:* emad.dlala@tkk.fi (E. Dlala).

The generalized vector hysteresis model introduced by Mayergoyz [11] for static fields is a prevailing model because it can well represent the **B**–**H** behavior. In this article, the authors propose a modification to the generalized vector hysteresis model [11] in order to account for the magnetodynamic rotational quantities. The identification of the proposed model is considered in the article and proven to be simple. A time-stepping 1D finite-element procedure is carried out to solve the magnetodynamic problem under rotational field excitations in which rotational losses are modeled, separated, and analyzed.

2. Magnetodynamic vector hysteresis model

The focus of this article is on developing an isotropic magnetodynamic vector hysteresis model and its integration into 1D finite-element method while the extension of the analysis to 2D is omitted here and remains as a future pursuit. The authors prefer to write the magnetic field quantities of the 1D model in small letters instead of capital letters, which are commonly adopted for 2D problems. The 1D and 2D models are related because the time-varying components of the flux density of the 2D model ($B_x(t)$ and $B_y(t)$) are used to set the boundary conditions of the 1D model [5].

The nonlinear 1D magnetodynamic problem can be formulated using the fixed-point iteration as

$$\nabla \times v_{\rm fp}(\nabla \times \boldsymbol{a}) + \sigma \frac{\partial \boldsymbol{a}}{\partial t} = -\nabla \times \boldsymbol{m},\tag{1}$$

where σ is the conductivity of the ferromagnetic material and the residual term m is associated with the nonlinearity. Here, a is the magnetic vector potential, which normally has the x and y components perpendicular to the lamination depth z.

If one assumes that the second term in Eq. (1) is negligible $(\sigma \partial (a/\partial t) = 0)$, then the isotropic vector hysteresis relation between H and B can be simply characterized by the generalized vector hysteresis model [11] in its inverted version [12] without the need of solving the nonlinear problem (1). Considering N directions along e_3 , the output H is directly calculated as

$$\boldsymbol{H} = \sum_{i=1}^{N} \boldsymbol{e}_{\vartheta_i} F_{\text{st}}(\boldsymbol{B}_{\vartheta_i}) = \sum_{i=1}^{N} \boldsymbol{e}_{\vartheta_i} \boldsymbol{H}_{\vartheta_i}, \tag{2}$$

where $B_9 = B_x \cos^{1/w}(9) + B_y \sin^{1/w}(9)$, and w is a coefficient associated with the rotational loss and can be experimentally identified.

On the other hand, if the "magnetodynamic" vector hysteresis property is taken into account $(\sigma \partial a/\partial t \neq 0)$, the *static*, hysteretic function $F_{\rm st}$ must be replaced by a *dynamic*, hysteretic function $F_{\rm dy}$ and Eq. (1) must be solved. However, the dynamic function $F_{\rm dy}$ which involves the solution of Eq. (1) renders the vector model difficult to identify. Therefore, the authors propose to modify Eq. (2) as follows:

$$H = \sum_{i=1}^{N} e_{\beta_i} \frac{F_{dy}(b_{\beta_i})}{N^{\gamma}} = \frac{1}{N^{\gamma}} \sum_{i=1}^{N} e_{\beta_i} h_{\beta_i},$$
 (3)

where γ is a parameter characterizing the magnetodynamic vector hysteresis and can be identified so that the output of the magnetodynamic vector model magnetized along one direction is equal to the output of the magnetodynamic scalar model. The natural simplification in Eq. (3) lies in two aspects. First, the model utilizes the scalar hysteresis data directly without additional modification, which is not the case when using model (2). Second, γ can be identified to be unique for a wide range of frequencies. This means that model (2) is no longer needed even in static field conditions.

The nonlinear problem in the lamination is linearized by defining $m_{\vartheta}(z,t) = h_{\vartheta}(z,t) - v_{\rm fp}b_{\vartheta}(z,t)$, where $v_{\rm fp}$ is a constant to be chosen appropriately. In the lamination, the dynamic, hysteretic relation is described in the ϑ direction by a viscosity-based model [4,13]:

$$h_{\vartheta}(z,t) = F_{\rm st}(b_{\vartheta}(z,t)) \pm \left| \frac{1}{R} \frac{\mathrm{d}b_{\vartheta}(z,t)}{\mathrm{d}t} \right|^{1/p}.$$
 (4)

The first term of Eq. (4) can be, in principle, computed by any static hysteresis model. In this work, the history-dependent model [14], which employs a static family of first-order reversal curves, has been used. The second term of Eq. (4) represents the excess field through the time delay of the magnetic flux behind the field strength. The field strength on the surface $h_{\theta}(z=d/2,t)$ is being used for computing the output of the vector model (3). The dynamic magnetic resistivity R is a material property and the constant p is related to the dependency of the excess loss on the frequency. The signs \pm are switched according to whether the field is increasing or decreasing.

Eq. (1) is discretized using first-order finite-element method and solved by the Crank-Nicholson time-stepping scheme. N system of equations for a_9 result and are strongly coupled through the magnetodynamic vector hysteresis model. Since the components a_9 are symmetric around the plane z=0, only the segment [0,d/2], instead of [-d/2,d/2], is needed to be discretized in the solution of Eq. (1), saving half of the computation time. The 1D model is subjected to a known magnetic flux per unit length $\phi = Bd$. Thus, the magnetic vector potential on the boundary is computed from

$$a_{\vartheta}\left(z = \frac{d}{2}\right) = \frac{1}{2}\phi_{\vartheta} = \frac{1}{2}b_{\vartheta}d = \frac{d}{2}(B_x \cos^{1/w}(\vartheta) + B_y \sin^{1/w}(\vartheta)),$$

$$a_{\vartheta}(z = 0) = 0.$$
 (5)

3. Application of the model

In order to identify the magnetodynamic vector model, the characteristics of a soft magnetic steel sheet of thickness, $d = 0.5 \,\mathrm{mm}$, conductivity, $\sigma = 2.92 \times 10^6 \,\mathrm{S/m}$, and coercivity, $H_c = 57 \,\mathrm{A/m}$, have been experimentally obtained. A set of dynamic $\textbf{\textit{B-H}}$ loops as well as their respective iron losses have been measured in the existence of alternating unidirectional fields for various frequencies at different flux densities. The measurements were made

Download English Version:

https://daneshyari.com/en/article/1815197

Download Persian Version:

https://daneshyari.com/article/1815197

<u>Daneshyari.com</u>