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Abstract

In this paper, dynamic Preisach model is applied to investigate magnetic stochastic resonance. It is shown that magnetic systems

described by dynamic Preisach model presents magnetic stochastic resonance. The resonance in the power amplification disappears if the

frequency of the input signal is greater than characteristic frequency of the system introduced by dynamic Preisach model and the

resonance in signal to noise ratio is strongly reduced under the same condition. Finally, frequency and phase locking phenomenon is

detected under resonance condition.

r 2007 Published by Elsevier B.V.
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1. Introduction

Stochastic resonance (SR) is generally considered as an
amplification of the system response for certain finite
values of the noise strength that is pumped into the system
[1,2]. In particular, the signal to noise ratio (SNR) and the
signal amplification show a maximum as a function of the
noise intensity. It is generally accepted that a system should
be bistable and non-linear in order to present SR.

SR has been experimentally observed (for a review see
Ref. [3]) in many physical systems and also in magnetic
systems. The occurrence of SR in magnetic systems is
remarkable because it demonstrates that SR can occur not
only in bistable systems but also in systems that are
multistable. Some theoretical approaches have been devel-
oped to describe SR (for a theory of SR in magnetic
systems see Ref. [4] and for a review see Ref. [3]) they
usually assume that the system is bistable and that there is
a hysteresis in the switching between one state and the
other, but no theoretical approach is able to describe SR in
systems that present a magnetic-like hysteresis area (i.e. an
entire area of accessible states, that is surrounded by a

major loop), in this paper this effect will be called magnetic
stochastic resonance (MSR). MSR has been numerically
described by using the Classical Preisach Model (CPM) [5].
Moreover, as far as magnetic-like systems are concerned,

both the available theoretical and the numerical descrip-
tions of SR do not include the dynamic features of the
system and they assume that the typical relaxation time of
the system is negligible. However, this is clearly a rough
approximation.
In order to clarify the influence of the dynamic features

of the system, in this paper MSR in magnetic systems
described by dynamic Preisach model (DPM) is numeri-
cally investigated. The use of DPM allows to study the
features of the SR in connection with the dynamic features
of the magnetic systems. More particularly, in this paper it
is shown that:

– magnetic systems described by DPM presents SR;
– the resonance in the power amplification disappears if
the frequency of the input signal is greater than
characteristic frequency of the system introduced by
DPM and SR in SNR is strongly reduced under the
same condition;

– frequency and phase locking phenomenon is detected
under resonance condition.
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2. The DPM

DPM was introduced to describe dynamic features of the
magnetic systems. A full description of the model can be
found in Ref. [6]. Below, only the features important for
the comprehension of this paper will be outlined.

In DPM, the magnetization M(t) at the generic time t is
given by the equation

MðtÞ ¼Ms

Z 1
0

dhc

Z 1
�1

pðhc; huÞfðhc; hu; tÞdhu, (1)

where Ms is the saturation magnetization, p(hc, hu) is the
Preisach Model density function and f(hc, hu, t) describes
the state of each elementary Preisach Model loop at the
time t. f(hc, hu, t) varies according to

@jðhu; hc; tÞ

@t
¼

k HðtÞ � ðhu þ hcÞ½ �; if HðtÞoðhu þ hcÞ

k HðtÞ � ðhu � hcÞ½ �; if HðtÞoðhu � hcÞ

(
,

(2)

where k is an unknown parameter. The Dynamic Model
becomes equivalent to CPM if the parameter k becomes
infinite, because, in this case, the function j(hc, hu, t) can
assume only the values �1 and +1. The parameter k

quantifies the finite rate of the switching of the hysterons
of DPM.

3. The numerical approach

In this paper, it is assumed that the external magnetic
field (hext) applied to a magnetic material consisted of two
components, one small sinuisodal component added to a
Gaussian noise component:

hext ¼ Hs sin tþDðtÞ, (3)

where t is the time and D is the Gaussian noise. D was
generated by a suitable Gaussian generator in which the
root mean square was controllable. The frequency of the
sinusoidal component was kept constant at the value of 1
in all the numerical simulations here presented and the
dynamic features of the system were changed by letting k

vary. The value of hext was computed at several time steps.
As a result, the time evolution of the magnetization of the
system could be computed by inserting Eq. (3) in DPM
(Eqs. (1) and (2)). A Lorentzian Preisach distribution
function was used in Eq. (1). Its expression is given in Ref.
[5]. The Lorentzian function is identified by two parameters
sc and H0. sc was set equal to 0.1 and H0 to 1. This
distribution generates a major loop of the static hysteresis
that has a coercive field equal to 1 (see Ref. [5]).

The magnetization was computed by discretizing the
integral in Eq. (1) on a suitable grid. The grid on the
Preisach plane is rectangular with 0phcp4 and �3phup3
and it is made by a maximum of 1000� 1000 points and
the set of differential equations in Eq. (2) were solved by
standard numerical techniques.

The Fast Fourier Transforms (FFT) of the magnetiza-
tion was computed and the value of the component of the

FFT for the frequency of the signal was used to compute
the SNR and the power amplification.
The SNR was calculated by

SNR ¼ 10 log10
P1

N1

� �
(4)

and the power amplification as

Z ¼ 2
jM1j

Ms

� �2

, (5)

where P1 is the output signal power level obtained from the
FFT of the resulting magnetization at the frequency of the
sinusoidal component, N1 is the noise level obtained from
the same FFT at the frequency of the sinusoidal com-
ponent, M1 is the component of the FFT at the frequency
of the sinusoidal component and Ms is the amplitude of
the magnetization obtained with no noise pumped in the
system.
The SNR, the power amplification and the behavior of

the magnetization for several Hs and D as a function of the
parameter k have been computed.
In Fig. 1, the FFT of the time varying magnetization for

an amplitude of Hs ¼ 0.5 in the case of presence of noise
with a value of Hrms ¼ 0.8 and for k ¼ 1000 is shown. The
FFT of the time varying magnetization for an amplitude of
Hs ¼ 0.5 in the case of absence of noise has a maximum
value that is much smaller (1/1000) than the one pr-
esented in Fig. 1. That means that the addiction of noise
enhances the signal. This, together with the non-monotonic
behavior of both SNR and Z, is the fingerprint of SR.
Moreover, for Hs ¼ 0.5 and Hrms ¼ 0.8 but for k ¼ 0.01
the maximum in FFT was strongly reduced (1/2000) and
no SR occurred.
Fig. 2 shows SNR as a function of Hrms for various

values of k at Hs ¼ 0.5. The variation of k implies the
modification of the dynamic features of the system. In
particular the reduction of k from a high value (1000) to a
small one (0.001) implies that the frequency of the input
signal is much lower in the characteristic frequency of the
system in the first case (and therefore CPM is applicable)
and much higher in the second case. It can be seen how for
values of k less than 1, SNR presents a maximum value
almost equal to the minimum one. However, it seems that
there is still a non-monotonic behavior of SNR.
As a result, these data indicate that the occurrence of

SR is negatively affected if the frequency of the signal
gets close or becomes higher than the characteristic
frequency of the system. This behavior has been experi-
mentally reported in Ref. [7] in a non-magnetic system,
even though in that case the maximum frequency of the
signal was lower than the characteristic frequency of the
system.
Fig. 3 shows Z (dB) as a function of Hrms for various

values of k at Hs ¼ 0.5. It can be seen how for values of k

less than 1, Z does not present any SR. It is worth saying
that the absolute value of M1 in the case of low ks be-
comes much less (three order of magnitudes) than the
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