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Abstract

Including the contribution of spin–orbit splitting, the wave functions and energy structures of GaN/InxGa1�xN multiple quantum

wells (MQWs) have been calculated. For the transition between valence band and conduction band, the third-order nonlinear optical

susceptibility w(3) of quadratic electro-optic effect (QEOE) for the mode whose polarization is vertical to the [0 0 1] direction of the

MQWs, has been calculated. The correlations between w(3) and the width of the MQWs, and the concentration of In, are obtained.
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1. Introduction

Recently, there has been an increasing focus on the
nonlinear optical properties of low-dimensional quantum-
confined structures, such as multiple quantum wells
(MQWs), due to their potential application in optoelec-
tronic and photonic devices [1–4]. GaN-based semicon-
ductor materials have attracted considerable interest of
people for their good properties of wide energy gap, high
electron saturated drift velocity and high thermal con-
ductivity [5–8]. For low-order nonlinear optical effects, the
calculation of nonlinear optical susceptibility, which
determines the nonlinear behaviors, is very important. In
contrast to bulk material, the third-order nonlinear optical
susceptibility of GaN/InGaN MQWs has a great enhance-
ment due to the existence of the quantum confinement
effect in one or several directions. Since the energy gap of
InGaN is wide and the spin–orbit split-off energy is similar
to the energy difference between valence subbands, the
contribution of the spin–orbit split-off energy cannot be
neglected in the calculation of the energy band structure
and nonlinear optical susceptibility of GaN/InGaN MQWs,

which is different from that in GaAs-based MQWs [9,10].
On the other hand, in many experiments of MQWs, only
the mode, whose polarization is vertical to the [0 0 1]
direction, is working, for incident laser beam is often
vertical to the surfaces of samples. So for the mode with
vertical polarization, including the contribution of the
spin–orbit splitting, the third-order nonlinear optical
susceptibility of quadratic electro-optic effect (QEOE),
due to the transitions between valence band and conduc-
tion band, has been calculated with varying of the width of
the MQWs and the composition of the semiconductor
material.

2. Model and theory

The schematic structure of the GaN/InGaN zinc blende
MQWs used in this paper is shown in Fig. 1. Potential wells
are formed because the energy gap of InGaN is smaller
than that of GaN. The potential barrier between two
neighboring wells is wide enough so that the wave
functions in the wells will not overlap and the MQWs
can be treated as a single QW in the analyses.
To calculate the energy structure, there have been a lot of

methods raised by different research teams. Among them,
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the k � p method which includes the effect of all the bands
(conduction and valence bands) in one Hamiltonian is

quite accurate [11–13]. However, the six-band model which
includes only the effect of valence bands is a good
approach for wide gap semiconductors such as CdS and
InGaN, because the conduction and valence bands are not
strongly coupled [14]. In this paper, the six-band model is
chosen for the calculation.

Using the effective mass approximation [15,16], the wave
function near G point in the first Brillouin zone of the QW
can be expanded as

CðrÞ ¼
X

i

UiðrÞFiðrÞ. (1)

Here, Fi(r) is the slowly varying envelope function and Ui(r)
is the Bloch function. For the electrons in the conduction
band, Ui(r) equals to the ground state wave function. For
the holes in the valence band, Ui(r) corresponds to six
band-edge wave functions jVii (i ¼ HH ";LH ";SO ";
SO #;LH #;HH #). Thus, the effective mass equations of
the electrons and holes can be obtained. Because the QW
forms discrete quantized energy levels in the direction of z

and correspondingly the electrons and holes are only
confined in the z-direction, the slowly varying envelope
functions can be dealt with the method of separation of
variables. Setting the energy level at the top of the valence

band as zero, the slowly varying envelope function and
energy for the electrons at the bottom of the conduction
band can be written as
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yÞ

2m�e
þ

_2n2p2

2m�eL2
, (3)

where n ¼ 1, 2, 3, y. Eg is the energy gap of the
semiconductor material InGaN. m�e is the effective
mass of the electrons. L is the width of the QW. The
normalization constants Lx and Ly denote the lengths
of the QW in the direction of x and y, respectively. For
the holes in the valence band, the Hamiltonian can
be expressed as the 6� 6 Luttinger-Kohn matrix H0

[17,18]:

Here, D denotes the splitting of spin–orbit coupling. A+,
A�, B and C have the forms
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where m0 is the real mass of the electrons. g1, g2 and g3 are
Luttinger parameters.
Then, the envelope wave function of the holes in the

z-direction can be expanded by the wave functions of
infinite square potential well as follows:

Fi
vðzÞ ¼

ffiffiffiffi
2

L

r XM
m¼1

Cm
i sin

mpz

L
. (6)

Here, i denotes one of the six band-edge wave functions
and i ¼ HH ";LH ";SO ";SO #;LH #;HH #. In this
way, the effective mass equation of the holes can be
rewritten into an eigenvalue problem of a 6M� 6M matrix
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Fig. 1. The structure of GaN/InGaN multi-quantum wells.
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