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A theorem on boundary functions for quantum shutters
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Abstract

We prove for one-dimensional time-dependent quantum absorbing (and reflecting) slits that for right-moving incident waves, the

Laplace transform of the boundary function must have singular points at the complex roots of
ffiffi
s
p
� i

ffiffiffiffiffiffiffiffiffiffiffiffi
ðie=_Þ

p
¼ 0. We test our result

against the exact case of the Moshinsky absorbing (and reflecting) shutter, and the agreement is perfect. In the same Moshinsky problem,

when the approximated Kirchhoff boundary condition is used, the transmitted wave is a superposition of right- and left-moving

Moshinsky packets. Neglecting the wrong directed wave components we get the exact solution.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum transient currents resulting from the decay
of a compound state in nuclear reactions, or the chopping
of monoenergetic beams of particles into pulses, are just
some of the particular cases that can be described with
the theory of transmission of quantum waves passing
through slits opening with a finite velocity. The earliest
reports by Moshinsky [1] and Gerasimov et al. [2], were
for one-dimensional (1D) slits opening with infinite
velocities. More recently, theoretical and experimental
time-dependent quantum phenomena, given for 3D slits
opening with finite velocities, have been extensively
reported [3–6].

All quantum time-dependent slits are reduced to the
following theory. Consider a continuous beam of free
particles, of energy � ¼ p2=2m, moving in the direction of
the z-axis: c ¼ exp½iðpz� �tÞ=_�. For all negative times, the
beam is interrupted by a completely absorbing shutter
located at the plane z ¼ 0. Suddenly, at time t ¼ 0, the

shutter begins to open with a velocity v0 allowing the free
evolution of the initially interrupted beam of particles.
What is the transmitted wave function at the right of the
shutter?
One approach to the shutter problem implies solving, as

a boundary-value problem for the semi-infinite region zX0,
the time-dependent Schrödinger equation

qc
qt
¼ ig=2c; g �

_

2m
. (1)

Since the absorbing shutter opens at t ¼ 0, the initial
condition for all z40 is cðr; 0Þ ¼ 0. The imposed boundary
conditions (BC) at the shutter wall, z ¼ 0, can be either of
Dirichlet or Neumann type. Since our discussion is
independent of this choice, for simplicity we take the
Dirichlet case.
According with the general theory of partial difference

equations [7], given the 1D free propagators, g1ðx; t; x0; t0Þ
and g2ðy; t; y0; t0Þ, for the infinite (x; y) space,

g1g2 ¼
yðt� t0Þ

4pigðt� t0Þ
exp

i½ðx� x0Þ
2
þ ðy� y0Þ

2
�

4gðt� t0Þ

� �
, (2)
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and the free propagator g3ðz; t; z0; t0Þ, for 0pzo1, which
satisfies g3 ¼ 0 at the boundary z ¼ 0,

g3 ¼
yðt� t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pigðt� t0Þ

p exp
iðz� z0Þ

2

4gðt� t0Þ

� �
� exp

iðzþ z0Þ
2

4gðt� t0Þ

� �� �
,

(3)

the general expression for the transmitted wave at the right
of the shutter is:

cðr; t; v0Þ

¼ ig
Z t

0

dt0
qg3

qz0

����
z0¼0

ZZ þ1
�1

dx0 dy0 g1g2c0ðx0; y0; t0; v0Þ,

ð4Þ

where c0 is the boundary function at z ¼ 0 and

qg3

qz0

����
z0¼0

¼
z exp½iz2=4gðt� t0Þ�ffiffiffiffiffiffi

4p
p
½igðt� t0Þ�

3=2
. (5)

Eq. (4) is an exact integral representation for the
transmitted wave function at zX0. However, it cannot be
used because, for each particular shutter, nobody knows
what the exact expression of the boundary function c0 is.
Pauli put a remedy to this complication accepting the
scalar Kirchhoff approximation used in Optics [8], where
the approximation assumes that the boundary function is
given by the product of the incident plane wave in the
absence of any screen, evaluated at z ¼ 0, times a
transmission function T. For an absorbing shutter we have:

c0ðx; y; t; v0Þ � expð�i�t=_ÞTðx; y; t; v0Þ. (6)

The function T is just a time-dependent mask, defined by
T ¼ 1 for the open boundary and T ¼ 0 for the closed one.

In Optics, the Kirchhoff BC works best in the short-
wavelength limit, in which the diffracting openings have
dimensions large compared to the wavelength. Obviously
when the quantum shutter is in the initial process of
opening, the Kirchhoff BC cannot give reliable results. We
claim that in quantum diffraction the validity of the
Kirchhoff approximation is a dubious one, specially at
short times and/or fast periodic choppers [9]. The problem
is that in every beam chopping experiment reported so far,
nothing but the Kirchhoff BC has been used to theoreti-
cally explain the experimental outcomes [9–11]. This
happens, we believe, because there is no other simple
choice for a BC in the quantum literature.

After reviewing a few properties about the 1D quantum
shutters, the purpose of the present work is first to make
the fundamental assumption that the direction of the
transmitted wave is the same as the direction of the incident
one. Next, we prove that the Laplace transform of the
boundary function must have a particular analytic
structure in the complex s-plane, with singular points
defined by the complex equation

ffiffi
s
p
� i

ffiffiffiffiffiffiffiffi
i�=_

p
¼ 0. We test

our theorem against the Moshinsky shutter, where the
exact transmitted and boundary functions are well known.
The agreement is perfect. Next we show that for the
same Moshinsky problem, the Kirchhoff approximation

yields a transmitted wave which has components that travel
in the wrong direction. By just neglecting the wrong
component we get the exact solution to the Moshinsky
shutter.

2. One-dimensional case

For simplicity, let us consider in Eq. (4) the 1D case,
where the transmitted function c depends only on z and t.
This happens if the boundary function c0 depends only on
time t not on (x, y). In such case, sinceZZ þ1
�1

dx0 dy0 g1g2 ¼ 1, (7)

the exact 1D transmitted function becomes

cðz; t; v0Þ ¼ ig
Z t

0

dt0
qg3

qz0

����
z0¼0

c0ðt0; v0Þ. (8)

This relation is still a dead end; we cannot get the
transmitted wave c because we do not know the boundary
function c0. However, assuming that we can get some extra
information about c, we can use the integral equation (8) to
derive some properties about c0. To do so, we provide the
needed extra information about c making the following:

Assumption. For a right-moving monoenergetic beam of
particles falling upon an absorbing shutter with a
transmission functions T such that T ¼ 1 for the open
boundary and T ¼ 0 for the closed one. The transmitted
wave function has to be a right-moving wave packet:

cðz; t; v0Þ ¼ eiðpz��tÞ=_Aðz; t; v0Þ, (9)

where Aðz; t; v0Þ is a transient amplitude such that for long
times

lim
t!1

Aðz; t; v0Þ ¼ 1. (10)

Assumption (9) means that the transmitted wave has
the same direction as the incident one. Eq. (10) means that
for long times the transient behavior is gone. These
assumptions are based on physical insight, no prove is
intended.

If the assumptions are accepted, we have enough
information to derive some analytic properties of the
boundary function c0. Indeed, substituting Eq. (9) into (8)
we get

eiðpz��tÞ=_Aðz; t; v0Þ ¼ ig
Z t

0

dt0
qg3ðt� t0Þ

qz0

����
z0¼0

c0ðt0; v0Þ.

(11)

This is a Volterra integral equation which imposes very
restrictive conditions on the analytic structure of c0.
Since the integral in Eq. (11) is a convolution type, a

Laplace transform L gives an algebraic condition for
L½c0ðtÞ� �

~c0ðsÞ. Using Laplace transform tables [12] we
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