Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/13882481)

Electrochemistry Communications

journal homepage: www.elsevier.com/locate/elecom

A novel solution for cathodic deposition of porous $TiO₂$ films

Chi-Chang Hu^{a,*}, Ching-Chun Huang^a, Kuo-Hsin Chang^{a,b}

a Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan bDepartment of Chemical Engineering, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi 621, Taiwan

article info

ABSTRACT

Article history: Received 14 November 2008 Received in revised form 3 December 2008 Accepted 4 December 2008 Available online 13 December 2008

Keywords: Cathodic deposition Anatase TiO2 EQCM $NO₂$ ^{$-$} Post-deposition annealing

1. Introduction

Titanium dioxide, also known as titania, is widely recognized as an important electrode material in semiconductor photo-electrochemistry. Among the three main crystalline phases: anatase, rutile, and brookite TiO₂, the anatase form $(A-TiO₂)$ is the most popular photo-electrode because the lowest unoccupied molecular orbital of Ru-based dyes such as N719 is very close to the conduc-tion band of A-TiO₂ [\[1,2\].](#page--1-0) In addition, A-TiO₂ generally shows relatively high reactivity and chemical stability under ultraviolet light excitation for water and air purifications, photocatalysts, gas sensors, electrochromic devices, and so on [\[3–5\],](#page--1-0) further emphasizing its practical importance.

Several techniques were proposed for fabricating $TiO₂$, such as sol–gel, chemical vapor deposition, hydrothermal, electrospinning, anodizing, and electrodeposition [\[5–8\].](#page--1-0) Among these methods, electrodeposition of $TiO₂$ becomes attractive because electrochemical deposition displays the advantages of thickness and morphology control, by varying the electroplating parameters; relatively uniform deposits on complex shapes; and low cost of instruments [\[9\]](#page--1-0). Although both anodic and cathodic depositions have been em-ployed to prepare TiO₂ films [\[10–20\]](#page--1-0), there are few studies discussing the deposition mechanism.

This study shows the preliminary results on developing a newly designed solution containing TiCl₃ and NaNO₃ for cathodic deposition of porous $TiO₂$ films. The mechanism of this deposition process

The redox reaction between TiCl₃ and NaNO₃ to form Ti(IV) and NO₂⁻ prior to deposition in a specially designed TiCl₃ + NaNO₃ solution is the key step effectively promoting the cathodic deposition of porous TiO₂ films. The continuous reduction of NO_2^- to N_2 and NH₃ generates extensive OH⁻, enhancing the deposition rate of TiO₂. The linear sweep voltammetric (LSV) and electrochemical quartz crystal microbalance (EQCM) studies reveal the electrocatalytic effect of oxy-hydroxyl-titanium already deposited onto the substrate for the NO_2^- and N_2 reduction. The porous and crystalline structures of as-deposited and annealed TiO₂ films are examined by field-emission scanning electron microscopic (FE-SEM), transmission electron microscopic (TEM) and selected area electron diffraction (SAED) analyses.

- 2008 Elsevier B.V. All rights reserved.

is systematically investigated to allow facile control of the deposition of $TiO₂$ for future applications.

2. Experimental

Titania particulates are cathodically deposited onto graphite substrates from a simple deposition bath containing 0.47 M HCl, 25 mM TiCl₃ and 75 mM NaNO₃ in a three-compartment cell. The pretreatment procedure of graphite substrates completely followed our previous work [\[21\].](#page--1-0) An Ag/AgCl electrode (Argenthal) was used as the reference and a piece of platinum gauze was employed as the counter electrode. The open-circuit potential of this solution is about 0.63 V and the range for potentiodynamic deposition is between 0.63 V and -1.2 V at a scan rate of 50 mV s⁻¹ for 20 cycles. The electrodes were cleaned in an ultrasonic DI water bath and dried under a cool air flow. After cleaning and drying, some electrodes were annealed in air at 400 \degree C for 1 h.

The morphologies were examined by a FE-SEM (Hitachi S-4700I). The EQCM study was performed by an electrochemical analyzer, CHI 4051A (CH Instrument) in a one-compartment cell. The microstructure and SAED patterns of as-deposited and annealed $TiO₂$ deposits were observed through a TEM (FEI E.O Tecnai F20 G2). The depth profiles of Ti and O were measured by an X-ray photoelectron spectrometer (XPS, ULVAC-PHI Quantera SXM), which employed Al monochromator ($hv = 1486.69$ eV) irradiation as the photosource.

3. Results and discussion

[Fig. 1](#page-1-0) shows the redox reaction between TiCl₃ and $NO₃⁻$ during preparation of the deposition solution. Nitrates, acting as the

^{*} Corresponding author. Tel.: +886 3 573 6027; fax: +886 3 571 5408. E-mail address: cchu@che.nthu.edu.tw (C.-C. Hu).

^{1388-2481/\$ -} see front matter @ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.elecom.2008.12.012

Fig. 1. Photographs of (A) TiCl₃, (B) NaNO₃, and a mixture of 25 mM TiCl₃ and 75 mM NaNO₃ at (C) 10 and (D) 40 s.

oxidizers, were reduced to $NO₂$ (see bubbles in Fig. 1C) when the transparent $NaNO₃$ solution (Fig. 1B) was added into the purple TiCl₃ solution (Fig. 1A). Since NO₂ molecules are soluble in aqueous media, they automatically convert into NO_3^- and NO_2^- . This statement is supported by the observation that bubbles gradually disappear within 30–40 s and the purple $TiCl₃$ solution standing for the existence of Ti^{3+} became colorless transparent, representing the formation of $TiO²⁺$.

$$
Ti^{3+} + NO_3^- \rightarrow TiO^{2+} + NO_2
$$

\n
$$
2NO_2 + H_2O \rightarrow HNO_3 + HNO_2
$$
\n(1)
\n(2)

$$
2 \times 1 - 4
$$

ious electrolytes are used to clarify the mechanism. On curves 1 $(0.47 \text{ M} \text{ HCl})$ and 2 $(0.47 \text{ M} \text{ HCl} + 75 \text{ mM} \text{ Na}NO_3)$, reduction

Fig. 2. LSV curves measured at 5 mV s^{-1} from 1.0 V to -1.3 V in a solution containing (1) 0.47 M HCl, (2) 0.47 M HCl + 75 mM NaNO₃, (3) 0.47 M HCl + 75 mM NaNO₂ and (4) 0.47 M HCl + 25 mM TiCl₃ + 75 mM NaNO₃.

Fig. 3. (A) LSV and (B) EQCM curves measured at 5 mV s⁻¹ from 0.2 V to -0.9 V in a solution containing 0.47 M HCl + 25 mM TiCl₃ + 75 mM NaNO₃ for the (1) first and (2) second scans. Inset in (B) is the first scan.

Download English Version:

<https://daneshyari.com/en/article/181579>

Download Persian Version:

<https://daneshyari.com/article/181579>

[Daneshyari.com](https://daneshyari.com/)