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Dynamics of two interacting electrons in a one-dimensional
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Abstract

We investigated the role that the electron–electron interaction plays on the propagating properties of wave packets in a one-

dimensional crystal with impurities. We considered two interacting particles with opposite spins in a band, where we treated their

interaction along the Hubbard model. We have obtained the density of states of the crystal for different values of the interaction term, as

well as solved the dynamical Schrödinger equation by varying the initial conditions. We have introduced a method through which we

were able to follow the time evolution of the wave packets for both spins showed in three-dimensional plots, and have evaluated, for each

particle, the corresponding mean-square displacement and the centroids as function of time. These measurements allow us to determine

the influence of the interaction on dynamical properties. We discussed the combined effect that the extension of the initial wave packets

and the interaction strength have on propagating properties. Under certain conditions we obtained an oscillatory movement of the

overlapping packets associated with both spins that takes place in a small region of the lattice.
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1. Introduction

According to the scaling theory of localization developed
by Abrahams et al. [1] in low-dimensional systems (one and
two dimensions), any degree of disorder will prevent the
appearance of a metallic phase. Moreover, former experi-
ments done with two-dimensional electron systems fabri-
cated on semiconductor surfaces showed a logarithmic
increase of resistivity while lowering the temperature [2–5].
This behavior lends support to the scaling theory of
localization, since this happens in case of a weak
electron–electron interaction. These results were in agree-
ment with theoretical predictions [6] that weak electro-
n–electron interaction increases localization. The above
experiments were done with samples of high density of

electrons, i.e., systems for which the associated Wigner
radius rs51; which is the ratio of the Coulomb energy to
Fermi energy.
However, such a scaling theory does not take into

account the electron–electron interaction which was lately
believed to be responsible for a metal–insulator transition,
observed in several experiments performed at zero mag-
netic field described below. In the metallic phase, one
observes a strong temperature dependence (a steep
dR=dT40Þ caused by the delocalizing effects produced by
the interaction between the particles.
As the density is reduced such that rsb1; the interaction

becomes dominant, for that regime. Finkelstein [7] and
Castellani et al. [8] predicted that for sufficiently strong
interactions, a 2D system should present a conducting
phase as the temperature is lowered. Since recently the
fabrication of 2D samples of high quality with very small
amount of randomness was possible, measurements were
done at very low particle densities. In this way the strongly
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interacting regime ðrsb1Þ has become experimentally
accessible. For instance for rs410 experiments done on
low-disordered 2D silicon samples demonstrated that with
increasing electron density one can cross from the
insulating regime, where the resistance diverges with
decreasing temperature, to a regime where the resistance
decreases strongly with decreasing temperature, clearly
showing metallic behavior [9–12].

In addition to that, in an extensive numerical analysis of
the two-dimensional Anderson model with dimerized
disorder, we have reported the existence of several
dynamical regimes [13,14].

As far as we are concerned there is no a theoretical
explanation that describes adequately the metal–insulator
transition in 2D systems, as well as the dramatic increase of
the spin susceptibility in its vicinity. Comprehensive studies
of the state of the art of this intriguing problem are
presented by Abrahams et al. [15] and Kravchenko and
Sarachik [16].

In 1D systems with random disorder of any intensity, all
states are exponentially localized as shown in the pioneer-
ing work by Anderson [17] in dealing with diagonal
disorder, i.e., a model where the on-site energies are
randomly distributed. On the other hand, when some
correlation is included in the model, and without consider-
ing interaction between particles, this picture is substan-
tially modified, giving the appearance of extended states
and, consequently, carriers are able to propagate through
the system. Several structures with correlated disorder
show vanishing of localization, when one considers nearest-
neighbors hopping. Among them one can quote the
random-dimer model that can explain the high conductiv-
ity of polymers [18–21]. Another example that shows
correlated disorder, responsible for particle diffusion in
1D, is provided by the structures where the on-site energies
follow the Fibonacci and Thue–Morse sequences [22–26].
One should also mention the Harper model of a
quasicrystal which presents a mobility edge when the
strength of the potential equals the half-bandwidth.
Starting with a well-localized particle in the lattice, as long
as the Harper potential is less than half-bandwidth, we
encounter ballistic propagation [27–30]. The purpose of
this work is to analyze the role the electron–electron
interaction plays on propagation in some 1D nonperiodic
structures. First, we present in Section 2 the model
assumed for the interaction between two particles in a
band, namely the Hubbard Hamiltonian. The two electrons
are assumed to be in the singlet state in order to detect the
effect of the Hubbard term, since it acts on opposite spins.
We show the density of states for different strengths of the
interaction. The dynamics tools introduced in order to
characterize the dynamical behavior are presented in
Section 3, namely, the time evolution of the mean square
displacement (MSD) and the centroids associated with
each of the particles, as well as the construction of 3D
graphs of the wave packets evolution. In Section 4 we
discuss the interplay between the strength of the interaction

U with the initial wave packet extension. In Section 5 we
present the results concerning a 1D crystal with impurities.
In Section 6 we present the conclusion to which we arrived
in this work.

2. The Hubbard Hamiltonian for two electrons interacting in

a band

With the aim to study the influence of the Coulomb
interaction between carriers in a 1D lattice, we treat the
electron–electron interaction along the Hubbard model [31]
in a crystalline system with impurities. As the experiments
show, the electron–electron interaction should modify the
behavior of the carriers as obtained in a one particle non-
interacting scheme. In our work, we introduce two
interacting particles in an otherwise empty band. The
study of such a problem has deserved a number of
interesting works due to the relevant question of what is
the role of the interaction between electrons on propagat-
ing properties in low-dimensional disordered systems
[32–38]. We assume that by solving the present problem
one can get a better understanding of the role the
interaction plays in real systems.
We consider a 1D lattice of N sites with lattice parameter

d, for which the Hubbard Hamiltonian is

H ¼
X

r;s

cþr;scr;ser þ V
X

r;s

ðcþrþ1;scr;s þ c.c.Þ þU
X

r

n̂r"n̂r#,

(1)

where er is the on-site energy, cþr;sðcr;sÞ is the Fermi creation
(destruction) operator for an electron of spin s at site r, V is
the hopping term and n̂r"ðn̂r#Þ is the number operator for
spin up (spin down) at site r. As it was stated above, in
order to analyze the role the U term plays on the dynamics,
we treat the case of electrons with opposite spins, the
singlet.

2.1. Energy spectrum for a crystal

To obtain the energy spectrum for the singlet in an
impurity-free 1D lattice, we solve the stationary Schrödin-
ger equation in the Wannier representation where we
expand the eigenfunction in terms of the kets jns;ms0i that
represent the state with one electron of spin s at site n and
the other with spin s0 at site m:

FE ¼
X

ns; ms0

gðns;ms0;EÞjns;ms0i. (2)

In the Wannier representation we obtain the following set
of equations corresponding to energy E:

V ðgnþ1;m þ gn;mþ1 þ gn�1;m þ gn;m�1Þ

þ ðgn þ gm þUdn;mÞgn;m ¼ Egn;m. ð3Þ

In this equation the first index refers to a particle with spin
up and the second for spin down. The Wannier amplitudes
gn"; m# do not depend on time. For simplicity we omit the
label E in the Wannier amplitudes.
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