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Abstract

Mass density of a composite is generally taken as the volume-averaged value of components’ densities. Moreover, the same volume-

averaged mass density is usually used to calculate the wave speed in the long-wavelength limit, i.e., where the wavelength is much larger

than the size of the inhomogeneities. In this paper, we show via rigorous derivation that the dynamic mass density used in the calculation

of (long-wavelength) wave speed can differ significantly from the static volume-averaged value. This recognition is shown to yield an

excellent account of some recent experimental data, as well as to make possible the realization of acoustic metamaterials. Physical reason

for the difference between two mass densities is attributed to the relative motion between the components. That is, the implicit

assumption—that all components in a composite must move uniformly in the long-wavelength limit—can be violated in the limit of large

acoustic impedance contrast between the components. The dynamic mass density can even be negative for the locally resonant sonic

materials as demonstrated both experimentally and theoretically. The implications of this finding, in the context of acoustic

metamaterials, are discussed.
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1. Introduction

It is regarded as common sense that the mass density of a
composite must be the volume-averaged densities of its
components, e.g., DV ¼ ð1� f ÞD1 þ fD2 for a two-compo-
nent composite in which component 1 constitutes the
matrix and component 2 the dispersed inclusions, with
respective densities D1, D2, and f being the filling ratio of
the inclusions. This expression is denoted below as the
volume-averaged mass density (VAMD, or DV). Indeed,
the static version of the mass density must be the VAMD,
since it is verifiable through simply weighing the composite
and its constituents, and measuring the respective volumes.
However, an important application of the composite mass
density is in the prediction of wave speed v at the low-
frequency limit, where the relevant wavelength is much
larger than the typical feature sizes in the composite, i.e.,
v ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=r

p
, where M is the effective modulus of the

composite and r is defined to be the dynamic mass density.
The question is: does r ¼ DV necessarily? As explained
below, the answer to this question has a direct bearing on
the realizability of acoustic metamaterials.
Historically, it has always been assumed that r ¼ DV,

except two decades ago Berryman [1] derived a different
dynamic mass density expression for the prediction of
(fluid matrix—solid) composite wave properties in the
long-wavelength limit, based on the average T-matrix
approach:

r�D1

ðd � 1ÞrþD1
¼ f

D2 �D1

ðd � 1ÞD2 þD1
, (1)

where d denotes the spatial dimensionality of the problem.
The Berryman effective mass density expression is noted to
differ significantly from the intuitive VAMD, and for all
the intervening years after the initial derivation it has
remained a curiosity rather than extensively used, mainly
owing to the lack of experimental support as well as to the
strong sense that the intuitive VAMD must be correct,
since otherwise it would be equivalent to stating the rather
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radical principle that the static mass density for a
composite should be different from its dynamic mass
density, even in the long-wavelength limit. An additional
objection to the Berryman expression is that the derivation
treats the multiple scatterings inherent in the inhomoge-
neous system only in an averaged sense, and therefore not
rigorous.

It is the purpose of this paper to clarify the relationship
between the dynamic and static mass densities, and to
delineate some of the implications of our findings [2]. In
what follows, a description of the rigorous derivation
approach is followed by the application of the result
to some recent experimental data, together with a physical
explanation of the difference between r and DV in
that particular case. The possibility of a negative r is
then explored and demonstrated in the case of locally
resonant sonic materials [3]. We conclude with a discussion
on the possible experimental realization of acoustic
metamaterials.

2. Rigorous derivation approach

Since our goal is to derive an expression for the dynamic
mass density of a composite, the starting point is
necessarily the elastic wave equation. As a composite is
usually characterized by random microstructures, the wave
equation cannot be solved exactly. Hence, the conventional
approach to the derivation of so-called ‘‘effective media’’
equations necessarily involves approximations, such as the
‘‘average T-matrix approximation’’ or the ‘‘coherent
potential approximation’’. Such approximations are usual-
ly in the nature of treating the multiple scatterings in some
‘‘average’’ manner.

Here, we propose a different, rigorous approach to the
derivation of the effective media equations in the long-
wavelength limit. In order to be specific, let us take the
example of a two-dimensional (2D) problem involving
aligned cylinders dispersed in a matrix. The starting point
of our approach is to treat a periodic microstructure, i.e.,
the cylinders are placed on a 2D lattice. Due to the
periodicity, exact solution of the wave equation becomes
possible. Multiple scattering theory [4–6] (MST) is one
such exact approach, which will be described below. Given
MST, we can always take the long-wavelength limit of the
relevant equations by letting the wave frequency o-0. In
that limit the dispersion relation of the wave (in the
periodic microstructure) must be linear, because one
wavelength covers many periods of the structure, hence
losing its wave resolution, and the periodic composite
would appear homogeneous to the probing wave. The
slope of the linear dispersion relation yields the desired
effective wave speed.

But how can such an approach be exact for a composite
in which the aligned cylinders are randomly dispersed?
Does not the answer depend on which periodic micro-
structure is chosen? To answer such questions, it is only
necessary to observe that the structure of the system enters

only in the higher order expansion of ka, where k is the
wave vector and a the lattice constant. In another words, to
the leading order the slope of the linear part of the
dispersion relation is independent of the periodic structure,
but depends only on the filling factor f. Therefore, whether
the structure is random or periodic does not matter. The
effective wave speed obtained by taking the long-wave-
length limit of the MST thus represents that of the random
microstructure as well! In this manner, we are able to
capture rigorously all the MSE in our effective medium
expression.
Of course, there are limits to such an approach. What is

described above can work only to the extent that the
randomness does not introduce new statistical correlations,
such as connectivity of the system, that are absent in the
original problem.

3. Multiple scattering theory

MST accounts fully for all the multiple scattering effects
between any two scatterers, plus the vector character of
elastic waves, without any approximation. For our
particular case of 2D elastic MST in polar coordinates,
the displacement u

*
of the incident wave on scatterer i and

the scattered wave (by the same scatterer) may be
expressed, respectively, as

u
*in

i ðr
*

iÞ ¼
X

n

ai
n J
*i

nðr
*

iÞ,

u
*sc
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X

n

bi
nH
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iÞ, (2)

where the vector functions J
*

nðr
*
Þ and H

*

nðr
*
Þ are defined as

XJ
*

nðr
*
Þ ¼ r½Jnða1rÞeinj�,

H
*

nðr
*
Þ ¼ r½Hnða1rÞeinj�, (3)

with a1 being the wave number in the fluid matrix, r
*
¼

ðr;jÞ denotes the polar coordinates, and Jn(x) and Hn(x)
on the right side of Eq. (3) denote the nth-order Bessel
function and Hankel function of the first kind, respectively.
Since the incident wave on scatterer i comes from the
scattered waves by all the scatterers except scatterer i, we
have
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n00
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With the help of the addition theorem, we can prove that

H
* j

n00 ðr
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jÞ ¼
X

n

G
ij
n00n J
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*

iÞ, (5)

where G
ij
nn0 ¼ Gnn0 ðR

*

j � R
*

iÞ denotes the translation (from
scatterer i to scatterer j) coefficients, with R

*

iðjÞ denoting the
position of scatterer i(j). We refer to Ref. [6] for the precise
definition of Gnn0 ðR

*
Þ. For a given scatterer, the scattered

field is completely determined from the incident field
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