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Abstract

Band gaps of elastic waves, both in-plane and anti-plane waves, propagating along arbitrary direction in one-dimensional disordered

phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the

concept of the localization factor. As a special case between ordered and disordered structures, we analyze the properties of the band

gaps of phononic crystals with quasi-periodicity (i.e. phononic quasicrystals). Compared with the periodic structure, phononic

quasicrystals involve more bands with localization of wave motion. The transmission coefficients are also calculated and the results show

the same behaviors as the localization factor does. Therefore, the localization factor may act as an accurate and efficient parameter to

characterize band structures of both ordered and disordered (including quasi-periodic) phononic crystals.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since Kushwaha [1] proposed the concept of ‘‘phononic
crystal’’, an artificial periodic elastic/acoustic structure that
exhibits so-called ‘‘phononic band gaps’’ [2], a great deal of
attention was focused on this kind of artificial lattice
structures [3]. Band gaps involved in phononic crystals
have numerous potential engineering applications such as
acoustic filters, control of vibration isolation, noise
suppression and design of new transducers. So far, several
methods were developed to calculate the band gaps of the
phononic crystals, for instance, the transfer matrix method
[4], plane-wave-expansion method (PWE) [5–7], finite-
different time-domain method (FDTD) [8–10], multi-
scattering theory (MST) [11] among others [12,13]. A lot
of results based on these methods were reported about the
band gaps of the perfectly ordered phononic crystals or
those with defects [14–16]. However in practical cases,
disorder, usually caused by randomly distributed material

defaults or manufacture errors during production process,
is very common. This may lead to localization phenomen-
on, like the well-known Anderson localization of electron
waves in disordered systems [17].
Since the pioneer works of Anderson [17], localization

phenomenon in randomly disordered systems has attracted
considerable attention, e.g. localization of acoustic waves
(AW) and electromagnetic waves (EW) in media with
properties fluctuating randomly [18,19], and vibration
localization of nearly periodic engineering structures such
as beams, bars, plates, etc. [20,21]. In the recent decade, the
band structures and localization phenomenon of EM
waves in disordered photonic crystals have also been
studied [22–24]. However, researches on randomly dis-
ordered phononic crystals are very limited. This topic, we
believe, is of practical importance not only because the
randomly distributed manufacture errors may cause the
disorder as we mentioned before, but also because one may
expect to tune the band structures of phononic crystals and
thus control the propagation behavior of elastic waves by
intentionally introducing disorder. In this paper, the band
gaps of elastic waves in one-dimensional (1D) random
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disordered phononic crystals are studied. The general case
of wave propagation in arbitrary direction will be
considered. Transfer matrix method will be employed.
Instead of calculating the transmitted waves, we will use a
well-defined localization factor [25] to characterize the
band structures and localization phenomenon of the
system. As expected, the numerical results show that the
localization factor predicts the same band structures as the
amplitude of the transmitted wave does for both ordered
and disordered phononic crystals. In addition, we will also
study elastic wave motion in 1D phononic crystals with
quasi-periodic structures (Fibonacci sequence). As we
know a quasi-periodic system is of the case between
ordered and disordered systems, and thus the waves therein
have both propagating and localizing modes [26]. Here, we
will examine its band structures using the localization
factor.

2. Problem statement and solution of wave motion equations

Consider a 1D phononic crystal shown in Fig. 1. The
phononic crystal consists of n unit cells. Each unit cell
includes two sub-cells made by two different materials (A
and B) and denoted by subscript j ¼ 1; 2. The thickness,
Lamé constant, shearing modulus, Young’s modulus and
mass density of the sub-cells are denoted by aj, lj, mj,
Ej½Ej ¼ mjð3lj þ 2mjÞ=ðlj þ mjÞ� and rj, respectively. So the
thickness of a unit cell is a ¼ a1 þ a2. For the present two-
dimensional problem, we introduce two displacement
potentials, j and c [27], such that the displacement
components, vx and vy, are written as vx ¼ qj=qxþ

qc=qy and vy ¼ qj=qy� qc=qx. Then, we have the
governing equations for wave motion,

r2j ¼ c�2L €j; r2c ¼ c�2T
€c, (1)

where r2 ¼ q2=qx2 þ q2=qy2; and cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
and

cT ¼
ffiffiffiffiffiffiffiffi
m=r

p
are the longitudinal and sheer wave speeds,

respectively. It will be convenient to cast the equations into
dimensionless forms by introducing the following dimen-
sionless local coordinates:

xj ¼ xj=ā1; Zj ¼ yj=ā1, (2)

where ā1 is the mean value of the thickness of material A (it
is exactly equal to a1 for the perfectly periodic structure).
We consider plane waves propagating in an arbitrary

direction with the y-component of the dimensionless wave
vector ky. Therefore, the general dimensionless solutions to
Eq. (1) have the forms

jjðxj ; Zj ; tÞ ¼ ½A1 expð�iqLjxjÞ

þ A2 expðiqLjxjÞ� expðikyZj � iotÞ,

cjðxj ; Zj ; tÞ ¼ ½B1 expð�iqTjxjÞ

þ B2 expðiqTjxjÞ� expðikyZj � iotÞ, ð3Þ

where 0pxjpzj ¼ aj=ā1; i
2
¼ �1; qLj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoā1=cLjÞ

2
� k2

y

q

and qTj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoā1=cTjÞ

2
� k2

y

q
; o is the circular frequency;

A1, A2, B1 and B2 are the unknown coefficients to be
determined. If we consider an incident wave with the phase
velocity of c0 propagates in an arbitrary direction of y0 (see
Fig. 1), then ky ¼ k0ā1 sin y0 with k0 ¼ o=c0.

The dimensionless displacement and stress components
are given by

v̄x ¼
qj
qx
þ

qc
qZ

,

v̄y ¼
qj
qZ
�

qc
qx

,

s̄x ¼ l
q2j

qx2
þ

q2j
qZ2

� �
þ 2m

q2j

qx2
þ

q2c
qxqZ

� �
,

t̄yx ¼ m 2
q2j
qxqZ

þ
q2c
qZ2
�

q2c

qx2

� �
, ð4Þ

which will form a state vector in the following analysis.

3. Transfer matrix

We take the dimensionless state vectors at the left and
right sides of each sub-cells in the kth unit cell

(k ¼ 1,2,y,n) as V
ðkÞ
jL ¼ s̄ðkÞxjL; t̄

ðkÞ
yxjL; v̄

ðkÞ
xjL; v̄

ðkÞ
yjL

n oT

and V
ðkÞ
jR ¼

s̄ðkÞxjR; t̄
ðkÞ
yxjR; v̄

ðkÞ
xjR; v̄

ðkÞ
yjR

n oT

; where the subscripts L and R

denote the left and right sides of the sub cells. These two
state vectors have the following relation:

V
ðkÞ
jR ¼ T0jV

ðkÞ
jL , (5)

where T0j are 4� 4 transfer matrices whose elements are
given in Appendix A, Eq. (A.1). The continuous conditions
at the interfaces between the two sub-cells and between the
two unit cells lead to the relationship between the state
vectors of the (k-1)th and kth unit cells,

V
ðkÞ
2R ¼ TkV

ðk�1Þ
2R , (6)

where Tk is the transfer matrix between two consecutive
unit cells and has the form

Tk ¼ T02T
0
1. (7)

It is noted that c ¼ 0 i.e. B1 ¼ B2 ¼ 0 for the normal
incident case, y0 ¼ 01 ðky ¼ 0Þ. Then in this case, the

vectors at the left and right sides of each sub-cells are
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Fig. 1. A schematic diagram of a 1D phononic crystal.
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