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Abstract

An anomalous positive shift when the mass of the Si host isotope is increased has been observed recently [Pereira et al., Physica B 340-

342 (2003) 697] for the asymmetric stretch frequency of the bond-centered proton in Si ðHþBCÞ. On the other hand, the usual downward

isotope shift was observed for the analogous bond-centered deuteron ðDþBCÞ. Based on phenomenological and ab initio modeling studies,

we explain the observed puzzling effect. We introduce a Si–H–Si linear model that accounts well for the observations when

anharmonicity, volumetric effects due to the host-isotope mass change, and the coupling of the Si–H–Si unit to the lattice are taken into

account. The positive isotope shift for HþBC results from anharmonic A2u þ A1g mode mixing and volumetric effects.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Local vibrational mode (LVM) infrared absorption
spectroscopy is among the most powerful techniques to
extract information concerning the atomic identity and
structural arrangement of light defects in solids (see for
example Refs. [1,2] and references therein). These include
many dopants and common contaminants in semiconduc-
tors. Defect LVM frequencies are usually described within
the harmonic approximation by reducing the defect-host
system to a diatomic (molecular) oscillator. In such
approach, a light mass m, representing the impurity,
vibrates against a heavy species of mass M, which
represents the host ligands whose mass is scaled by an
empirical parameter w. This is usually referred as the defect-

lattice coupling parameter [3] and corrects the oscillator
effective mass to account for the essentially different defect-

in-a-crystal problem. According to the molecular

approach, the LVM frequency omol is

o2
mol ¼ f mol

1

m
þ

1

wM

� �
, (1)

where f mol is the effective force constant for the oscillator.
Both f mol and w may be obtained from a fit to experimental
frequencies. Eq. (1) has been successful in characterizing
many centers like substitutional impurities in silicon [4].
Difficulties arise when w and f mol are fitted to data which

are strongly affected by anharmonicity. For example, the
hydroxyl free radical has an O–H stretch mode frequency
at 3568:0 cm�1 (for OH�) and at 2632:1 cm�1 (for OD�),
leading to f mol ¼ 42:68 eV Å�2 and w ¼ 0:6446. The latter
value is well far from the expected value w ¼ 1:0 for a free
diatomic molecule. Moreover, measurements of the second
harmonic of the stretch fundamental yield the determina-
tion of the harmonic frequencies at 3735:2 cm�1 for OH�

and 2720:9 cm�1 for OD�. These correspond now to rather
different values of f mol ¼ 48:16 eV Å�2 and w ¼ 0:9576,
which is now close to 1.

ARTICLE IN PRESS

www.elsevier.com/locate/physb

0921-4526/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.physb.2005.12.033

�Corresponding author. Tel.: +351 234 370 823; fax: +351 234 424 965.

E-mail address: coutinho@fis.ua.pt (J. Coutinho).

www.elsevier.com/locate/physb


The recent availability of quasi-monoisotopic Si crystals
[5] opened new prospects for the investigation of the host-
mass dependence of defect-related vibrations in this
material. In one of such studies, infrared bands at 1998
and 1448 cm�1 in natural Si, arising from the A2u vibration
of bond-centered protons ðHþBCÞ and deuterons ðDþBCÞ,
respectively, have been monitored in 28Si, 29Si and
30Si enriched crystals [6]. While the 1448 cm�1 band shifted
towards lower energies at a rate Do=DmSi �

�0:17 cm�1=amu with increasing the Si isotope mass, the
1998 cm�1 band showed an anomalous blue-shift
ð�0:1 cm�1=amuÞ. This behavior cannot be accounted for
by the above mentioned harmonic molecular model. In a
preliminary study [6], a three-body model, where the two
bonds are represented by the simple Morse potential, has
been used to describe the anomalous isotope effect in a
fairly accurate way. However, (i) the w parameter was
assumed to be that of an isolated molecule ðw ¼ 1Þ, which
may have affected the values obtained for the force
constants and (ii) changes in the crystal volume due to
the small variations in zero-point motion that result from
the mass change of the host atoms were not considered.
The volumetric effect (ii) leads to changes in LVM
frequencies and, as we shall see, for HþBC in silicon they
are of the same order of magnitude of the observed shifts.

State-of-the-art density functional modeling studies are
able to account for several hundreds of ligand atoms
around impurities to calculate accurate LVM frequencies
and, above all, to separate the harmonic, anharmonic,
volumetric, and defect-lattice coupling contributions to an
LVM frequency. Here we take a look at this problem, in
particular at the A2u vibrational frequency of HþBC and DþBC
centers in Si. Firstly, we estimate the defect-lattice
parameter for this mode. Secondly, we use experimental
data to estimate the isotope-induced volumetric contribu-
tion to the frequency shift. Finally, we calculate the
harmonic, anharmonic, and mode-mixing frequency con-
tributions to the LVM frequency.

2. Method

Energetics and vibrational properties of HþBC in Si are
calculated using a pseudopotential [7] density functional
code (AIMPRO) [8], along with the Padé parameterization
for the local density approximation [9]. Defects were
embedded in 216 atom cubic supercells, the Brillouin-zone
was sampled at 8 (MP-23) special k-points [10], and the
basis consisted in sets of atom-centered spd-like Carte-
sian–Gaussian orbitals. Specifically, a total of 4; 12, and
12 s;p, and d-like functions were used for each Si atom,
respectively, whereas 4 s and 12 p functions were used on
the H site. The charge density and potential terms were
dealt in reciprocal space with plane-waves of up to 200Ry.

Now, we introduce an analytical vibrational model for
HþBC in Si that is based on the three-atom Si–H–Si unit
shown in Fig. 1. We write the potential energy U in terms
of the QA1g

and QA2u
normal coordinates of the two modes

of this D3d center. The potential energy considers quadratic
ðU2Þ, cubic ðU3Þ, and quartic ðU4Þ terms and reads

UðQA1g
;QA2u

Þ ¼ U2 þU3 þU4, (2)

where

U2 ¼ a2f
A2
1g

Q2
A1g
þ b2f

A2
2u

Q2
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, ð3Þ
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þ 2ab2f
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A4
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2u

Q2
A1g

Q2
A2u

,

ð5Þ

and f
Ai
1g

A
j
2u

are force constants. Other parameters are

a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2ZmSi

p
; b ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Zmeff

p
, 1=meff ¼ 2=mH þ 1=ZmSi,

and Z is the three-atom analogous of the defect-lattice
coupling parameter w, which is introduced in an ad hoc
manner, such that the mass of each Si atom neighboring
the proton is ZmSi. Within the harmonic approximation,
symmetric and asymmetric stretching frequencies are

o
A1g

harm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

A2
1g
=ZmSi

q
and oA2u

harm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

A2
2u
=meff

q
, (6)

respectively. We now drop the symmetry labeling of
frequencies, and hereafter any frequency refers to the A2u

mode, unless otherwise stated.
We obtain the anharmonic contribution to the asym-

metric frequency oanharm ¼ oA
anharm þ oB

anharm þ oC
anharm

from the sum of the second-order and first-order correc-
tions to the cubic ðU3Þ and quartic ðU4Þ potentials,
respectively. Hence [11],
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The potential energy represented in Eq. (2) may be
estimated from ab initio calculations. Such ab initio
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Fig. 1. A sketch of the normal modes in the Si–H–Si three-atom model for

HBC in Si. Si and H atoms are represented as large white and small black

circles, respectively.
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