Available online at www.sciencedirect.com Physica B 374-375 (2006) 247-250 www.elsevier.com/locate/physb # Penetration depth study in the heavy-fermion superconductor PrOs₄Sb₁₂ L. Shu^a, D.E. MacLaughlin^{a,*}, R.H. Heffner^{b,c}, F.D. Callaghan^d, J.E. Sonier^d, G.D. Morris^{b,e}, O.O. Bernal^f, A. Bosse^{a,h}, J.E. Anderson^a, W.M. Yuhasz^g, N.A. Frederick^g, M.B. Maple^g ^aDepartment of Physics, University of California, Riverside, CA 92521-0413, USA ^bLos Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ^cJapan Atomic Energy Research Institute, Tokai-Mura, Naka-Gun, Ibaraki-Ken, 319-1195, Japan ^dDepartment of Physics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 ^cTRIUMF, 4004 Wesbrook Mall, Vancouver, Canada BC V6T 2A3 ^fDepartment of Physics and Astronomy, California State University, Los Angeles, CA 90032, USA ^gDepartment of Physics, University of California, San Diego, La Jolla, CA 92093-0319, USA ^hInst. f. Physik der Kondensierten Materie, Technische Univ. Braunschweig, 38106 Braunschweig, Germany #### Abstract The penetration depth λ in the filled-skutterudite heavy-fermion superconductor $PrOs_4Sb_{12}$ has been measured using transverse-field muon spin rotation (TF- μ SR). It is found to be temperature-independent at low temperatures, consistent with a nonzero gap for quasiparticle excitations. In contrast, radiofrequency (RF) measurements yield a stronger temperature dependence of $\lambda(T)$, indicative of point nodes in the gap. A \sim 10% discrepancy is found at low temperatures. This may be due to mechanisms that modify the vortex-state field distribution, or to the surface scattering which breaks pairs in an odd-parity superconductor. Alternatively, it may be a matter of field orientation of nodal gap structure in the μ SR measurements. © 2005 Elsevier B.V. All rights reserved. PACS: 71.27. + a; 74.70.Tx; 76.75. + i Keywords: Heavy-fermion systems; Superconductor; PrOs₄Sb₁₂; Transverse-field muon spin relaxation #### 1. Introduction The heavy-fermion-(HF) filled-skutterudite superconductor (SC) $PrOs_4Sb_{12}$ has attracted much interest because of its unconventional order parameter and pairing mechanism. It is the first Pr-based HFSC, with a superconducting transition temperature $T_c = 1.85 \, \mathrm{K}$ and an effective mass $m^* \approx 50 m_{\rm e}$, where $m_{\rm e}$ is the free-electron mass [1,2]. It is distinguished from other unconventional SC in that it has a nonmagnetic ground state of the localized f electrons in the crystalline electric field (CEF). Magnetic susceptibility, specific heat and inelastic neutron scattering experiments suggested that the CEF ground state of the Pr^{3+} ions is a nonmagnetic Γ_1 singlet (cubic notation), separated from a Γ_5 triplet excited state by $\sim 10 \, \mathrm{K} \, [1-3]$. The mechanism for the superconductivity of $PrOs_4Sb_{12}$ has been attributed to quadrupolar fluctuations [1,4] or, alternatively, to "rattling" of Pr ions in the icosahedral Sb cages of the filled-skutterudite structure [5]. A recent zero-field μ SR experiment on PrOs₄Sb₁₂ reveals the spontaneous appearance of static internal magnetic fields below T_c , providing evidence that the superconducting state is a time-reversal-symmetry-breaking (TRSB) state [6]. Our previous transverse-field muon spin relaxation (TF- μ SR) [7] and antimony nuclear quadrupole resonance measurements (Sb-NQR) [8] indicate a strong-coupling-based isotropic nodeless energy gap. However, ^{*}Corresponding author. Tel.: 1 951 827 5344; fax: 1 951 827 4529. E-mail address: macl@physics.ucr.edu (D.E. MacLaughlin). several recent experiments indicate the presence of point nodes in the energy gap [9,10], most notably thermal conductivity measurements on $PrOs_4Sb_{12}$ in a magnetic field, which have been interpreted as evidence for two distinct superconducting phases, a low-field phase with two point nodes and a high-field phase with four or six point nodes. #### 2. Experimental results and discussion We have carried out new time-differential TF- μ SR experiments at the M15 channel at TRIUMF, Vancouver, Canada, on a mosaic of oriented PrOs₄Sb₁₂ crystals. The crystals were mounted on a thin GaAs backing, which rapidly depolarizes muons in transverse field and minimizes any spurious signal from muons that do not stop in the sample. μ SR asymmetry data were taken for temperatures in the range 0.02–2.5 K and μ_0H between 10 and 100 mT applied parallel to the $\langle 100 \rangle$ axes of the crystals. Representative TF- μ SR muon-spin precession signals at an applied field of 10 mT are shown in Fig. 1 in the normal and superconducting states. A small nonrelaxing background signal is visible at long times in Fig. 1(b). The μ SR data were fit to an analytical Ginzburg–Landau model for the spatial field profile of the vortex lattice for $H \ll H_{c2}$ [11]: $$\mathbf{B}(\mathbf{r}) = B_0(1 - b^4) \sum_{K} \frac{e^{-i\mathbf{K}\cdot\mathbf{r}} u K_1(u)}{\lambda^2 K^2} \,\hat{z},\tag{1}$$ where λ is the magnetic penetration depth, the **K** are the reciprocal-lattice vectors of the unit cell, $K_1(u)$ is a modified Bessel function, $b = B/B_{c2}$ is the reduced field, and $$u^{2} = 2\xi^{2}K^{2}(1+b^{4})[1-2b(1-b)^{2}],$$ (2) where ξ is the Ginzburg–Landau coherence length. The fits are insensitive to the vortex core region for $H \leq H_{c2}$. This is Fig. 1. TF- μ SR spin precession signals in PrOs₄Sb₁₂, applied field 10 mT. (a) Normal state ($T=2.0\,\mathrm{K}$). (b) Superconducting state ($T=0.1\,\mathrm{K}$). The weak nonrelaxing signal in (b) is due to muons that do not stop in the sample. due to the large Ginzburg–Landau parameter $\kappa = \lambda/\xi$ and the low field, which means the vortex core region only occupies a very small region of the sample. In addition, the line shapes in frequency space are not very asymmetric, and the high-field tail due to the field near the vortex cores is not easily distinguished. By fixing ξ at different values it is found that the value of λ returned by the fits is not very sensitive to the choice of ξ . Hence by fixing $\kappa = 30$ [1,7], the fit is statistically satisfactory. The temperature dependence of λ is shown in Fig. 2 for an applied field of 10 mT. It can be seen that $\lambda(T)$ is constant below ~1 K, indicative of a gapped quasiparticle excitation spectrum. The curve $\lambda(T) = \lambda(0)(1 +$ $\sqrt{(\pi\Delta/2T)}e^{-\Delta/T}$) [7] gives a good fit to the data for $T \le 0.5T_c$ (inset of Fig. 2), suggesting that the energy gap is isotropic. However, radiofrequency (RF) measurements of the surface penetration depth in the Meissner state [10] suggest point nodes in the energy gap. In Fig. 3 we compare the change $\Delta \lambda = \lambda(T) - \lambda(0)$ obtained from μSR and surface measurements. Although the effect is small, in the inset it can be seen that at low temperature the increase of the TF-µSR data with increasing temperature is significantly less rapid than for the surface measurements. The difference between μSR and surface results at low temperatures is similar to that found in the TRSB transition-metal oxide superconductor Sr_2RuO_4 [12,13], but such a discrepancy is not found in a number of non-TRSB superconductors. Figs. 4(a) and (b) show the difference $\Delta\lambda_{surf}(T) - \Delta\lambda_{\mu SR}(T)$ for TRSB superconductors $PrOs_4Sb_{12}$ and Sr_2RuO_4 . Clearly the difference increases with increasing temperature; this is the discrepancy between the measurements noted above. Figs. 4(c)–(f) give $\Delta\lambda_{surf}(T) - \Delta\lambda_{\mu SR}(T)$ from literature data for the HF compound $CeCoIn_5$ [14,15], the borocarbide YNi_2B_2C [16,17], and the high- T_c cuprates $YBa_2Cu_3O_{6.95}$ [18,19] and Fig. 2. Temperature dependence of vortex state penetration depth of $PrOs_4Sb_{12}$. Inset: low-temperature dependence. curve: $\lambda(T) = \lambda(0)[1 + \sqrt{(\pi\Delta/2T)}e^{-\Delta/T}]$, $\lambda(0) = 0.3534(4)(\mu m)$, $2\Delta/k_BT_c = 4.9(1)$. ### Download English Version: ## https://daneshyari.com/en/article/1816805 Download Persian Version: https://daneshyari.com/article/1816805 <u>Daneshyari.com</u>