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Abstract

First-Order Reversal Curves (FORC) diagram method is known as a non-parametrical identification method for the Classical Preisach

Model. However, the FORC diagram is used for material characterization and can be simulated by any hysteresis model. In this paper we

analyze the possibility to use FORC diagrams for the identification of the hysteresis models parameters and the limits of this approach.
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1. Introduction

A significant number of models for the simulation of
hysteretic processes have been developed and are used in
various concrete situations. Whereas any of these models
can be used to fit a simple magnetization process, like the
Major Hysteresis Loop (MHL—the zero-order magnetiza-
tion process), it is not always clear what the criterion is for
the use of a certain model in a given case and how
accurately can that model describe higher-order magneti-
zation processes. After selecting a model, the central
problem is the identification of the optimum values of the
parameters for a given sample. Unfortunately, in many
papers we see identifications made based on a more or less
arbitrary selection of experimental data. In Fig. 1a, we
present identical MHLs calculated with the Classical
Preisach Model (CPM [1–3]) for two different sets of
parameters (Fig. 1b shows the Preisach distributions).
Mayergoyz has shown that, for a complete identification of
a CPM, a set of First-Order Reversal Curves (FORC)
should be used [3]. The sample magnetic moment on a
FORC is a function of the actual applied field, H, and of

the reversal field, Hr, on the descending branch of MHL,
m�FORCðH;HrÞ. As shown in Fig. 2, the FORC distribution
is calculated as the second-order mixed derivative of the
moment measured on the FORC:

rðH;HrÞ ¼ �
1

2

q2m�FORCðH ;HrÞ

qHqHr
, (1)

which is identical in CPM with the Preisach distribution.
This type of Preisach distribution identification is non-
parametrical, as we do not impose that the distribution
have any particular analytical shape. Hence, the accuracy
of the distribution identification is dependent on the field-
step size in the experiment. Pike et al. [4] have extended the
use of FORCs as an experimental tool to observe the
characteristics of any magnetic material with hysteresis.
The FORC diagram (or contour plot of the FORC
distribution) method is important because it relies on
experimental data. FORC diagrams have already been
reported for various types of magnetic materials (hard
magnetic, soft magnetic, recording media, magnetic rocks,
particulate media, etc.) [5]. The method has been extended
to other types of hysteresis, as well [6–8]. In this paper, we
discuss the possible use of the FORC diagram method as
an identification tool for any type of hysteresis model and
the limits of this approach.
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2. FORC diagrams generated by hysteresis models

Since the zero-order magnetization curve (the MHL) is
obviously not sufficient to identify the parameters of a
hysteresis model, we can use FORCs to find the optimum
set of parameters for any particular model. The use of the
FORC diagram is recommended in order to better observe
the differences between the experimental and the simulated
FORCs.

Figs. 3 and 4 present typical FORC diagrams obtained
with the Jiles–Atherton (JA) model [9] (Fig. 3) and the

energetic (Hauser) model [10] (Fig. 4), both of which have
been implemented, as described in the references provided.
What we have observed is that both these models have
quite a limited set of FORC diagram shapes that can be
simulated and which correspond to/indicate the range of
materials that can be modeled by each of the two models.
As expected, the JA model describes the typical features of
soft magnetic materials and the energetic model seems to
describe well strongly interacting systems, like magnetic
nanowire systems. Meanwhile, the classical Preisach model,
which is conceptually closer to the non-parametrical
FORC diagram identification method, can reproduce
exactly any diagram, provided that the experimental
distribution is used in the model. Is this fact enough to
guarantee that a hysteresis model can accurately describe
high-order magnetization curves? Unfortunately, even in
this case, proving that a system satisfies the respective
necessary and sufficient conditions, requires the execution
of a systematic experimental study, which involves a huge
number of experiments, which are often not conclusive, due
to the inherent experimental errors. For all the other
hysteresis models, the conditions that can assure that these
models will correctly describe curves of any order, for a
certain sample, are not defined. Consequently, the good fit
of the FORC diagram will not be a sufficient condition to
assure the accurate simulation of higher-order curves. The
fit of the FORC diagram could be seen only as a necessary
condition for any hysteresis model. If this condition it is
not satisfied, we cannot expect that the model will describe
higher-order curves correctly. Given that the MHL and the
FORC diagram can be represented with sufficient accuracy
by more than one phenomenological model and that there
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Fig. 2. FORC curves and diagram.
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Fig. 1. (a) Identical Major Hysteresis Loops calculated with Classical

Preisach Model for two sets of parameters (model’s parameters defined as

in Ref. [12]). All the distributions (of coercive, interaction fields and of the

reversible part) were considered to be Gaussian. (b) The Preisach

distributions for the two sets of parameters given in Fig. 1a.
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