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a b s t r a c t 

The theory of hole superconductivity predicts that in the reversible transition between normal and su- 

perconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular 

to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of su- 

perconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Since the Meissner-Ochsenfeld [1] experimental discovery in 

1933 that superconductors expel magnetic fields, and Gorter and 

Casimir’s [2] theoretical analysis shortly thereafter, it has been 

known that the transformation between normal and supercon- 

ducting states in the presence of a magnetic field is a reversible 

phase transformation between equilibrium phases of matter. The 

physics is described phenomenologically by the London electrody- 

namic equations [3,4] and microscopically by the BCS theory of su- 

perconductivity [5] . However we have argued in recent work that 

neither London’s theory nor BCS explain the process by which a 

normal metal becoming superconducting expels a magnetic field 

[6,7] , nor the process by which a superconductor in a magnetic 

field transforming to the normal phase loses its screening cur- 

rent without dissipation of Joule heat [8] . We have furthermore 

argued that to explain these phenomena some physical elements 

are needed that are not part of the conventional BCS-London 

theory of superconductivity but are part of the theory of hole 

superconductvity. [9] 

Let us summarize the shortcomings of the conventional theory: 

in the transition from the normal to the superconducting state, the 

process of expelling the magnetic field generates a Faraday elec- 

tric field that applies a force on carriers that is opposite to the 

direction of the Meissner current that is generated to expel the 

magnetic field. In other words, the process has to overcome the 

counter-emf that gets generated as magnetic field lines move out. 

The conventional theory argues that the free energy of the system 

is lowered in the process, but does not explain the physical ori- 

gin of the force that propels the process. Another way to say it, 
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the carriers of the Meissner current have to acquire a mechanical 

momentum opposite to the direction of the Faraday force, and the 

conventional theory does not explain how this occurs. In addition, 

the body as a whole has to acquire an opposite momentum, also 

opposite to the direction of the Faraday force acting on it, so that 

the total momentum is conserved, and there is no explanation for 

how this happens in the conventional theory [10] . In the reverse 

process where a superconductor in a magnetic field becomes nor- 

mal, the conventional theory does not explain how the momentum 

of the extinguishing supercurrent is transferred to the body as a 

whole without collisions that would result in dissipation of Joule 

heat in contradiction with the known reversibility of the process 

[8] . 

The theory of hole superconductivity overcomes these difficul- 

ties because it predicts that there is a flow and counterflow of 

charge in direction perpendicular to the phase boundary as the 

phase boundary moves with speed ˙ x 0 , as described in [6] and 

shown schematically in Fig. 1 . A carrier that is becoming super- 

conducting (electron) thrusts forward at a high speed v x ( v x � ˙ x 0 ) 

(labeled ‘flow’ in the figure) and acquires through the magnetic 

Lorentz force a velocity in the + ̂  y direction (dotted arrow), thus 

generating the supercurrent J y in the − ˆ y direction. A counterflow 

of normal negative charge occurs in the − ˆ x direction (not shown in 

the figure), which is equivalent (as shown in the figure) to a hole 

current moving in the + ̂ x direction (labeled ‘counterflow’ in the 

figure) at speed ˙ x 0 . This hole counterflow transfers momentum to 

the lattice ( P latt ) that exactly cancels the momentum acquired by 

the supercurrent. The counterflow occurs within a boundary layer 

of thickness λL from the phase boundary ( λL = London penetration 

depth). For the reverse process where the phase boundary moves 

in the − ˆ x direction expanding the normal phase the same pro- 

cesses occur with the directions of the arrows reversed. For more 

details see refs. [6–8] . 

http://dx.doi.org/10.1016/j.physc.2016.03.020 

0921-4534/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.physc.2016.03.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/physc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physc.2016.03.020&domain=pdf
mailto:jhirsch@ucsd.edu
http://dx.doi.org/10.1016/j.physc.2016.03.020


J.E. Hirsch / Physica C: Superconductivity and its applications 525–526 (2016) 44–47 45 

Fig. 1. Schematics of charge flow and counterflow in direction perpendicular to the 

normal (N) – superconductor (S) phase boundary, as the phase boundary located at 

x = x 0 (t) (dotted horizontal line) moves upward towards the normal region ( + ̂ x di- 

rection) with speed ˙ x 0 . The magnetic field H c points out of the paper. E F = H c ( ̇ x 0 /c) 

is the Faraday electric field generated by the changing magnetic flux due to the 

moving phase boundary. For a detailed explanation see text. 

Fig. 2. Hall effect geometry representative of the counterflow process shown in 

Fig. (1 ). In (a) the normal state carriers are assumed to be electrons, in (b) and 

(c) holes. F E and F B are electric and magnetic forces on the carrier, F l is the force 

exerted by the lattice on the carrier and F on −l is the force exerted by the carrier on 

the lattice. For a detailed explanation see text. 

In the following section we analyze in detail why it is crucial 

that the normal state carriers are holes in order to explain the 

physics. In Section 3 we discuss how this physics can be detected 

experimentally. We conclude in Section 4 with a discussion. 

2. Why hole carriers are necessary for superconductivity 

We consider the flow of current in crossed electric and mag- 

netic fields as shown in Fig. 2 , since this is the situation that takes 

place when a superconductor expels the magnetic field. This is the 

standard geometry of the Hall effect. Fig. 2 (a) shows a situation 

where the Hall coefficient is negative. As shown by Ashcroft and 

Mermin [11] , when all occupied k-space orbits are closed the Hall 

coefficient takes the simple form 

R H = 

E y 

J x H 

= 

1 

nec 
(1) 

with 

n = 

∫ 
occ 

d 3 k 

4 π3 
(2a) 

J x = 

∫ 
occ 

d 3 k 

4 π3 
v k,x (2b) 

�
 v k = 

1 

h̄ 

∂εk 

∂ � k 
(2c) 

The semiclassical equation of motion gives for the force in the 

ˆ y direction 

m e 

dv k,y 

dt 
= eE y − e 

c 
v k,x H + F l,y (3) 

where m e is the bare electron mass and 

�
 F l is the force exerted by 

the lattice on the electrons. In the presence of scattering we re- 

place dv k, y / dt by v k, y / τ on the left side, with τ the collision time, 

and integrating over the occupied k -states and using Eq. (2) yields 

m e 

e 

J y 

τ
= enE y − H 

c 
J x + 

∫ 
occ 

d 3 k 

4 π3 
F l,y (4) 

Setting J y = 0 as appropriate for the geometry in Fig. 2 and using 

Eq. (1) then yields ∫ 
occ 

d 3 k 

4 π3 
F l,y = 0 (5) 

Therefore, the total force exerted by the lattice on the conduc- 

tion electrons in the ˆ y direction is zero, and consequently the total 

force exerted by the conduction electrons on the lattice in the ˆ y 

direction is zero. This indicates that normal state electron carri- 

ers moving in crossed electric and magnetic fields will not trans- 

fer momentum to the lattice in the absence of scattering. How- 

ever, both in the process of a superconductor becoming normal in 

the presence of a magnetic field [8] , or in the reverse process of 

the superconductor expelling a magnetic field [10] , it is necessary 

that the electrons transfer momentum to the lattice in a reversible 

way, without scattering processes. Therefore we conclude that su- 

perconductivity as we know it cannot occur if the normal state car- 

riers are electrons. 

The situation is different if the normal state carriers are holes 

and the Hall coefficient is positive, shown in Fig. 2 (b), (c). As 

shown by Ashcroft and Mermin [11] if all the unoccupied orbits are 

close the Hall coefficient is given by 

R H = 

E y 

J x H 

= 

1 

n h | e | c (6) 

where 

n h = 

∫ 
unocc 

d 3 k 

4 π3 
= 

2 

v 
− n (7) 

is the number of hole carriers, i.e. of empty states in the band, and 

v is the volume of the unit cell. We rewrite Eq. (4) as 

m e 

e 

J y 

τ
= e 

(
2 

v 
− n h 

)
E y − H 

c 
J x + 

∫ 
occ 

d 3 k 

4 π3 
F l,y , (8) 

and setting J y = 0 and using Eq. (6) yields 

F l = 

∫ 
occ 

d 3 k 

4 π3 
F l,y = | e | E y 2 

v 
(9) 

for the total force exerted by the lattice on the electrons in the 

ˆ y direction. Correspondingly the force exerted by the electrons on 

the lattice is 

F on −l = −F l = 

∫ 
occ 

d 3 k 

4 π3 
F l,y = −| e | E y 2 

v 
(10) 

in the − ˆ y direction, i.e. to the right. This is the direction required 

to transfer momentum to the lattice as shown in Fig. 1 . 

In addition, there is the force exerted by the electric field on the 

ions, which points to the left and substracts from Eq. (10) . Since 

the system is charge neutral we can assume that the concentration 

of ions is (2 / v − n h ) equal to the concentration of electrons, so that 

the net force exerted on the ions is 

F net 
on −l = −| e | E y 2 

v 
+ | e | E y 

(
2 

v 
− n h 

)
= −| e | n h E y . (11) 

This result can also be deduced simply by looking at Fig. 2 (c) and 

substracting from F l the force exerted on the electron due to the 

electric field, which gives for each carrier a force | e | E y = F l / 2 point- 

ing to the left, hence the same force pointing to the right for the 

net force exerted on the lattice per carrier. For the case of Fig. 2 (a) 

there is no force exerted by the electrons on the lattice but there is 

a force on the lattice due to the electric field E y , yielding the same 

result as Eq. (11) with n replacing n h . Note that these results agree 

with what is predicted by Ampere’s force law 

�
 F = 

I 

c 
�
 L × �

 H (12) 

for the force on a Hall bar of length L and total current I , which 

is of course independent of whether the carriers are electrons or 

holes. 
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