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a b s t r a c t 

The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The 

shape of the junction determines the specific form of the magnetic-field dependence of its Josephson 

current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel 

junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide 

ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this 

type of isometry and derive the threshold curves of junctions whose shape is the union or the relative 

complement of two point symmetric plane figures. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Any Josephson device is characterized by a maximum zero- 

voltage d.c. current, I c , called critical current, above which it 

switches to a finite voltage. How the critical current modulates 

with an external magnetic field is an important issue for all the 

earlier [1] and novel [2] applications of the Josephson effect. It has 

long been addressed that the magnetic diffraction pattern (MDP) 

of planar Josephson tunnel junctions (JTJs) drastically depends on 

both the specific shape of the tunneling area and the direction of 

the in-plane applied field. Most of the milestone works which al- 

lowed significant advances in the understanding of the geometri- 

cal properties of the MDP [3–5] just considered a number of in- 

teresting shapes with the magnetic field applied in a preferential 

direction. However, the knowledge of the MDP for arbitrary field 

direction allows to evaluate the consequences of an unavoidable 

field misalignment in the experimental setups. Moreover, the mea- 

surements of I c ( H ) provides the first quality test of any Josephson 

device. 

In this Letter we highlight the MDP properties of a wide class of 

JTJs characterized by a point symmetric shape in the general case 

of an arbitrarily oriented in-plane magnetic field. Furthermore, in 

force of the additive property of the surface integrals, we show 

that the threshold curves of JTJs with complex shapes can be ex- 

pressed as a linear combination of the MDP of junctions with sim- 

pler point symmetric shapes. 
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1.1. Small JTJs 

In Josephson’s original description the quantum mechani- 

cal phase difference, φ, across the barrier of a generic two- 

dimensional planar Josephson tunnel junction is related to the 

magnetic field, H , inside the barrier through [6] : 

∇ φ = κH × u z , (1) 

in which u z is a unit vector orthogonal to the junction plane and 

κ ≡ 2 πμ0 d m 

/ �0 , where �0 is the magnetic flux quantum, μ0 

the vacuum permeability, and d m 

the junction magnetic penetra- 

tion depth [7,8] . The external field H , in general, is given by the 

sum of an externally applied field and the self-field generated by 

the current flowing in the junction. If the junction dimensions are 

smaller than the Josephson penetration length, the self-magnetic 

field is negligible, as has been first shown by Owen and Scalapino 

[9] for a rectangular JTJ . Henceforth, for (electrically) small JTJs 

the phase spatial dependence is obtained by integrating Eq. (1) ; in 

Cartesian coordinates, for an in-plane magnetic field applied at an 

arbitrary angle θ with the Y -axis, H = (H sin θ, H cos θ ) , it is: 

φ(x, y, H, θ, φ0 ) = κH(x cos θ − y sin θ ) + φ0 , (2) 

where φ0 is an integration constant. The tunnel current flows in 

the Z -direction and the local density of the Josephson current is 

[6] : 

J J (x, y, H, θ, φ0 ) = J c sin φ(x, y, H, θ, φ0 ) , (3) 

where the maximum Josephson current density, J c , is assumed 

to be uniform over the junction area. The Josephson current, I J , 

through the barrier is obtained integrating Eq. (3) over the junc- 

tion surface, S : 

I J (H, θ, φ0 ) = 

∫ 
S 

J J dS = J c 

∫ 
S 

sin φ dS. (4) 
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The junction critical current, I c , is defined as the largest possible 

Josephson current, namely,: 

I c (H, θ ) = max 
φ0 

I J (H, θ, φ0 ) , (5) 

The integral in Eq. (4) applied to the surface of an axis-parallel 

rectangle yields: ∫ y 2 

y 1 

d y 

∫ x 2 

x 1 

d x sin (k x x − k y y + φo ) = 

4 

k x k y 
sin 

k x (x 2 − x 1 ) 

2 

× sin 

k y (y 2 − y 1 ) 

2 

sin 

[
k x (x 2 + x 1 ) 

2 

− k y (y 2 + y 1 ) 

2 

+ φ0 

]
, (6) 

where ( x 1 , y 1 ) and ( x 2 , y 2 ) are the coordinates of, respectively, the 

lower left and upper right rectangle corners. Identifying k x and 

k y with, respectively, κH cos θ and κH sin θ , the critical current is 

achieved when 2 φ0 = ±π + k y (y 2 + y 1 ) − k x (x 2 + x 1 ) and we end 

out with the well-known double Fraunhofer diffraction pattern of 

a small rectangular JTJ in a arbitrarily oriented magnetic field [1] : 

I R c (H, θ ) = J c A R 

∣∣∣∣ sin [(κHW sin θ ) / 2] 

(κHW sin θ ) / 2 

sin [(κHL cos θ ) / 2] 

(κHL cos θ ) / 2 

∣∣∣∣, (7) 

where W = x 2 − x 1 and L = y 2 − y 1 are the rectangle edges and 

A R = W L its area. It can be be demonstrated that, if the rectan- 

gle is rotated by an arbitrary angle γ with respect to the Y -axis, as 

intuitively expected, Eq. (7) transforms to: 

I R c (H, θ ) = J c A R 

∣∣∣∣ sin { [ κHW sin (θ − γ )] / 2 } 
[ κHW sin (θ − γ )] / 2 

× sin { [ κHL cos (θ − γ )] / 2 } 
[ κHL cos (θ − γ )] / 2 

∣∣∣∣. 
The quantity within the absolute-value bars in Eq. (7) can be 

thought of as characteristic area-independent function, F R (H, θ ) , 

of all the axis-parallel rectangles with aspect ratio W / L : 

F R (H, θ ) ≡ sin [(κHW sin θ ) / 2] 

(κHW sin θ ) / 2 

sin [(κHL cos θ ) / 2] 

(κHL cos θ ) / 2 

. (8) 

2. Complementary junctions - Concentric rectangles 

To state the problem, let us consider a small planar JTJ whose 

tunneling area is obtained as the difference between two concen- 

tric and parallel rectangles of arbitrary aspect ratios such that the 

smaller rectangle, r , lies wholly inside the outer rectangle, R ( r ⊂ R ). 

This geometry is depicted in Fig. 1 where the origin of the Carte- 

sian axes is in the center of the junction; the sides lengths of the 

outer (inner) rectangle are W ( w ) and L ( l ). Such a structure can be 

realized by etching away or anodizing the inner part of the junc- 

tion base electrode. The surface of this complementary junction 

can be decomposed in the four rectangles shown in gray; we can, 

therefore, calculate its MDP, I R −r 
c (H, θ ) , making use of Eq. (6) for 

a single rectangle and exploiting the additive property of integrals. 

After some algebraic manipulation, one founds that for any value 

of the field angle θ : 

I R −r 
c (H, θ ) = J c | A R F R (H, θ ) − A r F r (H, θ ) | , (9) 

where A R = W L, A r = wl and the characteristic functions F r and 

F R are defined through the MDPs of the fictitious inner and 

outer rectangular junctions, respectively, I r c (H, θ ) ≡ J c A r | F r (H, θ ) | 
and I R c (H, θ ) ≡ J c A R | F R (H, θ ) | . Interestingly, Eq. (9) still holds if the 

rectangles are not parallel. Moreover, a similar expression also ap- 

plies when one or both the rectangles are replaced by arbitrarily 

oriented concentric rhombuses or ellipses. 

We remind that: (i) for a small diamond-like JTJ of diagonals P 

and Q parallel to Cartesian axes the characteristic function is [10] : 

Fig. 1. Schematic of a complementary planar JTJ resulting by the difference be- 

tween two concentric and axis-parallel rectangles of arbitrary aspect ratios. The 

outer rectangle has sides of lengths L and W , while the inner one has sides of 

lengths l and w . The junction area, W L − wl, is given by the sum of the areas of 

the four gray rectangles. The in-plane magnetic field, H , is applied at a generic an- 

gle, θ , with the Y -axis. 

F D (H, θ ) = 2 

cos [(κHP sin θ ) / 2] − cos [(κHQ cos θ ) / 2] 

(κHP sin θ/ 2) 2 − (κHQ cos θ/ 2) 2 
(10) 

and (ii) for a planar JTJ delimited by an axis-aligned ellipse of prin- 

cipal semi-axes a and b it is [11] : 

F E (H, θ ) = 2 

J 1 [ κHp E (θ ) / 2 ] 

κHp E (θ ) / 2 

, (11) 

where J 1 the 1st order Bessel function of the first kind and p E (θ ) ≡
2 
√ 

a 2 sin 

2 θ + b 2 cos 2 θ the length of the projection of the ellipse in 

the direction normal to the externally applied magnetic field. Eq. 

(11) , first reported by Peterson et al. [11] in 1990, generalizes the 

so called Airy pattern of a circular junction [1] of radius r = a = b. 

Indeed, we found that the MDP of a complementary JTJ result- 

ing from the difference (com plement), s ′ = S − s, of two concen- 

tric plane figures with two lines of symmetry (including uncon- 

ventional shapes like, for example, crosses, bow-ties, s-shapes and 

figure-eights), can be expressed in terms of their areas, A S and A s , 

and characteristic functions, F S and F s , that is: 

I s 
′ 

c (H, θ ) = J c | A S F S (H, θ ) − A s F s (H, θ ) | . (12) 

A similar expression was proved for the sum (union), S , of two dis- 

joint figures, s and s ′ , namely: 

I S c (H, θ ) = J c | A s F s (H, θ ) + A s ′ F s ′ (H, θ ) | . (13) 

In the following, we will demonstrate that the broadest geo- 

metrical requirement for the validity of Eqs. (12) and (13) is the 

point-symmetry of the plane figures. 

3. Point symmetric Josephson tunnel junctions 

Let us consider a small JTJ whose shape has a second or- 

der point or central-inversion symmetry, that is to say, is invari- 

ant upon a 180 ° rotation around one point called center of sym- 

metry, namely upon reflections in two perpendicular lines. If we 

pick any Cartesian system with origin in the center of symmetry, 

then the figure contour in the first (second) quadrant is reproduced 

specularly in the third (fourth) quadrant. One example of point- 

symmetric figure is illustrated by the gray shape in Fig. 2 . Any line 
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