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a b s t r a c t 

The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbi- 

trary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–

Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The 

self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We 

obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Lan- 

dau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are 

compared with experimental data on high- T c superconductor. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The Hall effect has received considerable experimental and the- 

oretical attention [1–11] after the discovery of high-Tc supercon- 

ductors (HTSCs). The interesting features in the Hall effect of HTSCs 

is the sign reversal of Hall coefficient R H in magnetic fields at the 

temperature just below the superconducting transition tempera- 

ture. This feature is detected in many HTSCs [3,5,7] and even in 

some conventional superconductors [12,13] . Moreover, a double- 

sign reversal in mixed states, which is a subsequent return of the 

Hall resistivity to the positive value before vanishing, has been ob- 

served in highly anisotropic HTSCs such as Bi 2 Sr 2 CaCu 2 O x crystals 

[8] , or HgBa 2 CaCu 2 O 6 films [9] . The existence of the second sign 

change was also reported YBa 2 Cu 3 -O 7 −x (YBCO) films [10,14] . Fi- 

nally, even a triple-sign reversal was reported in HgBa 2 CaCu 2 O 6 

films with columnar defects induced by high-density ion irradia- 

tion [11] . 

A variety of theories were proposed to explain the complex 

features of the Hall resistivity temperature dependence, but con- 

sensus has not been achieved yet. In HTSCs, the Hall anomaly 

may be due to the pinning force [15] , nonuniform carrier density 

in the vortex core [16,17] , or can be calculated in the time de- 

pendent Ginzburg–Landau (TDGL) model [1,2,4] . Several theoreti- 

cal approaches claim to predict the double or triple-sign reversal, 

based either on entirely intrinsic mechanism of vortex motion and 
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electronic spectrum [18] , or on hydrodynamic interaction between 

vortices and the superconducting and normal-state fluids [19] . The 

second sign change of the Hall resistivity turned out to be strongly 

vortex-pinning dependent, since it vanished at high transport cur- 

rent densities, or with the magnetic field B tilted off the twin 

boundaries by a small angle (5 o ) [20] . Based on a simple model 

of pinning potential, Kopnin and Vinokur [21] showed that an in- 

creasing pinning strength not only affected the longitudinal flux- 

flow resistivity, but also decreased the magnitude of the vortex 

contribution to the Hall voltage (fluctuation term in the TDGL ap- 

proach). A strong enough pinning can even result in a second sign 

reversal of the Hall resistivity [21,22] . However, for temperatures 

near the critical region where the first sign change of the Hall re- 

sistivity occurs, the pinning contribution to the Hall conductivity is 

almost negligible [20] . The TDGL approach is therefore considered 

to be appropriate, but theory should be modified by including pin- 

ning effects at lower temperatures and magnetic fields. 

According to the TDGL formalism, the total Hall conductivity is 

sum of the difference in sign between the normal part and the 

superconducting fluctuation part. These two parts have opposite 

signs, if the energy derivative of the density of states averaged over 

the Fermi surface is positive when the carriers are holes in the 

normal state [23] . Therefore, the sign reversal can be intrinsic and 

depends on the details of the structure of the electronic states at 

the Fermi surface. Although admittedly fluctuation Hall conductiv- 

ity σ s 
xy arises a result of an electron-hole asymmetry in the band 

structure [24] , it turns out that this is not the unique source of 

the apprearance of the imaginary part of the relaxation time in 

the TDGL equation. It was shown that the sign and value of the 
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imaginary part of the relaxation time strongly depend also on the 

topology of Fermi surface [25] . Recently, the Hall coefficient R H and 

the Hall angle θH of the cuprate superconductor YBCO was mea- 

sured in high field in the underdoped regime [6,7] , which reveals 

that the change of sign in the Hall coefficient R H is attributed to 

the emergence of electron pockets in the Fermi surface. These elec- 

tron pocket are not supported by the band structure of YBCO, so 

they must come from a reconstruction of the Fermi surface. More- 

over, value of the imaginary part of the relaxation time is not small 

in comparison with the real one in serveral HTSCs [4] . However, an 

additional assumption often made in analytical calculations [1,4] 

that the most dominant contribution to Hall conductivity σ s 
xy was 

the first order term in the imaginary part of the relaxation time. 

In this paper the fluctuation Hall conductivity and the Hall an- 

gle in two dimensional (2D) and three dimensional (3D) model are 

calculated by using the time TDGL approach for arbitrary value of 

the imaginary part of the relaxation time with strong thermal fluc- 

tuations. Self-consistent Gaussian approximation used in this pa- 

per is consistent to leading order with perturbation theory [26] in 

which it is shown that this procedure preserved a correct the ul- 

traviolet (UV) renormalization (is renormalization group invariant). 

Without electric field the issue was comprehensively discussed in 

a textbook of Kleinert [27] . While the Hartree method is gener- 

ally simpler, the Gaussian method applied in its consistent form 

conserves Ward identities (electric current) and its effective energy 

is positive definite. In addition it has the correct large number of 

components limit, unlike Hartree method. A main contribution of 

our paper are explicitly analytical formulas of the fluctuation Hall 

conductivity and the Hall angle incorporating all Landau levels and 

including arbitrary value of the imaginary part of the relaxation 

time. 

The paper is organized as follows. The model is defined in 

Section 2 . The Hall conductivity and the Hall angle in 2D is de- 

scribed in Section 3 , while extension to 3D model is Section 4 . The 

comparison with experiment is described in Section 5 . Finally, we 

conclude in Section 6 . 

2. The time dependent Ginzburg–Landau in 2D model 

We apply this model to describe experiments not just in BiS- 

CCO (highly anisotropic material) but also in underdoped YBCO. 

For more isotropic optimally doped or fully doped YBCO, an 

anisotropic 3D GL model (neglecting the layered structure) would 

be more appropriate. The imaginary part of the relaxation time 

�−1 
0 

in the TDGL equation must be introduced to break the 

particle-hole symmetry and allow for a nonvanishing Hall current 

[4] . The gauge-invariant relaxational TDGL equation governing the 

critical dynamics of the superconducting order parameter takes 

form: 
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Here m 

∗ is effective Cooper pair mass in the ab plane, a = a 0 (t − 1) 

is the GL potential with t = T /T 0 . The “mean field” critical tempera- 

ture T 0 depends on UV cutoff of the “mesoscopic” or “phenomeno- 

logical” GL description. The vector potential describes constant and 

homogeneous magnetic field A = (−By, 0 ) and �0 = hc/e ∗ is the 

flux quantum with e ∗ = 2 | e | . The electric field E is assumed along 

the y -axis, generated by the scalar potential � = −Ey . 

The Langevin white-noise forces ζ ( r , τ ) are correlated through 

s 
〈
ζ ∗(r , τ ) ζ (r ′ , τ ′ ) 

〉
= 2 T �−1 

0 δ(r − r ′ ) δ(τ − τ ′ ) , (2) 

where s is the order parameter effective “thickness”. 

The fluctuation current density, averaged with respect to the 

noise, writes: 
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+ c.c. (3) 

To solve Eq. (1) , one uses the self-consistent Gaussian approxi- 

mation which captures the most interesting fluctuations effects, in 

which the cubic term in the TDGL Eq. (1) , | 	| 2 	 , is replaced by a 

linear one 2 〈 | 	| 2 〉 	 . This results in a linear problem with a mod- 

ified GL potential ˜ a = a + 2 b 
〈| 	| 2 〉, which implies a renormalized 

reduced temperature 

˜ ε = ε + 

2 b 
〈| 	| 2 〉
a 0 

. (4) 

The average 〈 | 	| 2 〉 is to be determined, in principle, self- 

consistently together with the parameter ˜ ε . 
It is hereafter more convenient to rescale the TDGL Eqs. (1) 

and (2) variables to the new ones: x → ξx, y → ξy, τ → ττGL , B → 

hH c2 , E → E GL E, 	 → 

√ 

2 a 0 /b ϕ, ζ → (2 a 0 ) 
3/2 / b 1/2 ζ with ξ being 

the coherence length as a unit of length, H c2 = �0 / 2 πξ 2 as a 

unit of the magnetic field, τGL = �−1 
0 

ξ 2 m 

∗/ h̄ 2 as a unit of time, 

E GL = H c2 ξ/cξ as a unit of electric field. Then the TDGL Eq. (1) be- 

comes 
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The formal solution of this equation in zero electric field is 

ϕ(r , τ ) = 

∫ 
d r ′ 

∫ 
d τ ′ G 0 

(
r , τ ; r ′ , τ ′ )ζ (

r ′ , τ ′ ). (6) 

The Green function takes a form 
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with X = x − x ′ , Y = y − y ′ , τ ′′ = τ − τ ′ . θ ( τ ′ ′ ) is the Heaviside step 

function. C and β are coefficients as following: 
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Starting from Eqs. (6) and (7) , we are able to calculate the den- 

sity of Cooper pairs. The self-consistent Eq. (4) for the parameter ˜ ε 
will therefore be taken a form after renormalization of the critical 

temperature 
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where ε = T /T c − 1 , and ω 2 D = 

√ 

2 Gi 2 D π where Gi 2 D = 

1 
2 (8 e 2 κ2 ξ 2 T c /c 2 h̄ 

2 
s ) 2 ( T 0 is now replaced by T c ), ψ is the 

polygamma function, γ E is Euler constant. The self-consistent 

equation is cutoff independent and obtained without need to as- 

sume anything about λ. For several HTSCs, λ is a small parameter, 

reflecting the small Hall angle [4] . We shall therefore keep only 

the dominant zeroth order term in λ, the Eq. (10) takes a form 
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π
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Eq. (11) matches the corresponding expressions already found in 

Ref. [28] . 
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