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a b s t r a c t

Transport ac loss Q of a superconducting rectangular thin strip obeying a power-law relation E∝Jn as a func-

tion of current amplitude Im may be, following Norris, expressed by normalized quantities as q(im). A scaling

law is deduced that if Icf, Ic and f being the critical current and frequency, is multiplied by a positive con-

stant C, then im and qm are multiplied by C1/(n−1) and C2/(n−1), respectively. Based on this scaling law and the

well-known Norris formula, the general function of q(im, n, f) is obtained graphically or analytically for any

practical purpose, after accurate numerical computations on a set of q(im) at several values of n and a fixed

value of f.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Soon after Bean assumed in the critical-state (CS) model a con-

stant critical current density Jc to calculate the magnetization curve

of a hard superconducting cylinder [1], London reported his result of

the transport ac loss of a hard superconducting cylinder derived from

the same assumption [2]. For a long cylinder of radius a carrying a

transport current

I(t) = Im sin 2π f t, (1)

London obtained a CS relation between the ac loss Q per cycle per

unit length and Im as

q = (2 − im)im + 2(1 − im) ln (1 − im), (2)

where

q ≡ 2πQ/μ0I2
c , im ≡ Im/Ic, (3)

Ic = πa2Jc being the critical current. The validity of this formula was

later extended by Norris to a bar of elliptical cross-section with any

values of semi-axes a and b [3]. Eq. (2) for thin elliptical tapes is

relevant to 1G HTS (high-temperature superconductor) tapes and

has been well verified by both numerical calculations and analytical

derivation [4,5]. Norris also derived a formula for a rectangular thin
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strip [3], and with the same normalization as in Eq. (3) it is expressed

by

q = 2[(1 + im) ln (1 + im) + (1 − im) ln (1 − im) − i2
m]. (4)

This CS equation is more relevant to the 2G HTS tapes, for which a HTS

film is epitaxially deposited on a metallic substrate with a number of

buffer layers in between. The current-density and field distributions

corresponding to this case have been calculated by Brandt and Inden-

bom [6].

It has been shown that the measured q vs im curves of HTS tapes

are roughly located around the modeling curves calculated from

Eqs. (2) and (4), which means that the CS model is basically valid

for such tapes. However, this comparison between experimental and

modeling results is somewhat ambiguous, since the relations be-

tween current density J and electrical field E in the actual HTS tapes

and in the CS model are significantly different. In the CS model, |J|

cannot be larger than Jc, E = 0 occurs when |J| < Jc, and a finite E ap-

pears when |J| = Jc. As a result, Ic for a tape is a fixed value and the

ac loss Q is f independent. On the other hand, in transport current–

voltage (I-V) measurements of most HTS tapes, I changes with V in

the full penetration region following roughly a power law (PL), V∝In,

so that Ic has to be defined as that when E = V/l = Ec, where l is the

distance between both voltage taps and criterion

Ec = 10−4V/m (5)

is routinely defined. Related to this, ac loss Q is intrinsically f depen-

dent.
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The PL I-V curve comes from a local PL E(J) relation, which is ex-

pressed as [7–9]

E = (Ec/Jc)|J/Jc|n−1J. (6)

In fact, the CS model may be regarded as a limit case of the PL E(J)

relation with n → ∞, so that the q(im) relations expressed by Eqs. (2)

and (4) are the PL model q(im) at n → ∞.

When studying magnetic properties of superconductor discs,

cylinders, and rings with a PL E(J) relation, Brandt has proposed a

scaling law as follows [9]. When one changes the time unit by an ar-

bitrary constant factor of C and the current and field units by a factor

of C1/(n−1), then the equations of motion for the current density are

invariant; i.e., the same solutions result for the scaled quantities. For

the ac case if the applied field is Ha(t) = Hm sin 2π f t, the shape of

the hysteretic magnetization curve M(Ha) remains unchanged if one

increases f by a factor of C and Hm by a factor of C1/(n−1). Although the

scaling law has been proved explicitly only for superconductors of

particular shapes, it is thought to be geometry independent without

further arguments [9]. Using this scaling law, a firm base is provided

for the ac susceptibility technique of Jc determination of advanced

HTS samples [10].

The ac loss Q and E(I) curves of a cylinder obeying Eq. (6) have

been calculated by Chen and Gu [11,12] with a transport scaling law

proposed. This law has been deduced for the case of cylinder and ver-

ified numerically for strip [11,13]. Different from the above scaling law

for ac magnetization, where f is multiplied by C for any given super-

conductor, in the transport scaling law the product Icf is multiplied by

C, so that the ac loss of any pair of different superconducting cylinders

or strips may be mutually scaled to each other, and a set of computa-

tion results for cylinders or strips with arbitrarily chosen values of Ic

and f may be used for any other values of Ic and f. In particular, q(im)

curve at any value of f may be scaled to one at critical frequency fc

that has a common point with the CS curve expressed by Eq. (2) or

(4) at im = 1. Computing a set of such q(im) curves scaled to fc at sev-

eral values of n as a base, q(im) for any values of Ic, f, and n can be

obtained by interpolations and scaling.

Since this transport scaling law for the studied strips has not been

proved analytically in [13], we will do it in Section 2. We will improve

the computations done in [13] to obtain more accurately the basic set

of q(im) at fc and give its general expression, from which q(im) at n > 5

and any values of f can be obtained, in Section 3. The PL current den-

sity and electrical field profiles are shown and some applications of

the scaling law and the general expression of the basic set of q(im) are

described in Section 4 before the conclusions, which are presented in

Section 5.

2. Transport scaling law

The studied rectangular thin strip is placed along the z axis located

at |y| ≤ d/2 and |x| ≤ a � d. It is characterized by a PL E(J) relation as

Eq. (6). We calculate Q at different values of Ic, Im, n, and f by apply-

ing the procedure described in [13–15]. Defining the surface current

density K = Jd, Eq. (6) is written

E = (Ec/Kc)|K/Kc|n−1K = ρ(K)K, (7)

where Kc = Ic/2a is the critical surface current density. Dividing the

width 2a into N equal elements, each centered at xi(i = 1, 2, . . . , N),
the computation is started by calculating a matrix of components

[16]

Qi j = ln |xi − x j|/2π ( j 	= i)

= ln (a/πN)/2π ( j = i). (8)

This matrix is defined for converting the surface current den-

sity Kj( j = 1, 2, . . . , N) to vector potential Ai(i = 1, 2, . . . , N) in the

London gauge (Coulomb gauge) by

Ai = −μ02a

N

N∑
i=1

Qi jKj, (9)

and the components of its reciprocal Q−1
i j

are used for calculating Ki

by solving numerically a system of equations for i = 1, 2, . . . , N,

dKi

dt
= N

2μ0a

N∑
j = 1

Q−1
i j

[Kjρ(Kj) − Ea], (10)

2a

N

N∑
i = 1

Ki = Im sin 2π f t, (11)

where nonlinear resistivity ρ(Kj) is defined in Eq. (7) and Ea is math-

ematically an integration constant with respect to position and phys-

ically an electrical field energetically applied by the power supply,

which will be discussed elsewhere, and the aim of numerical com-

putation is to find a proper function of Ea(t) to satisfy Eq. (11) with

sufficient accuracy.

Having obtained Ki(t) for i = 1, 2, . . . , N, the loss power per unit

length at time t is calculated by

P(t) =
N∑

i=1

K2
i ρ(Ki)

2a

N
. (12)

The final loss per cycle per unit length is calculated by

Q =
∫ (m+1)T

mT

P(t)dt, (13)

where m + 1 ≥ 2 is the number of periods having calculated.

In order to prove the scaling law, dimensionless quantities of t and

K are defined as

τ = 2π f t, (14)

κ = K/Kc, (15)

so that Eqs. (10), (11), and (13) may be written as

dκi(τ )

dτ
= NEc

2πμ0 f Ic

N∑
j = 1

Q−1
i j

[κ j(τ )|κ j(τ )|n−1 − Ea(τ )/Ec], (16)

im sin τ = 1

N

N∑
i = 1

κi(τ ), (17)

q = 2πQ

μ0I2
c

= 1

μ0I2
c f

∫ (m+1)2π

m2π
P(τ )dτ

= Ec

μ0NIc f

∫ (m+1)2π

m2π

N∑
i = 1

|κi(τ )|n+1dτ. (18)

The scaling law may be deduced from Eqs. (16)–(18) as follows.

Since Qi j(i, j = 1, 2, . . . , N) are constants for any given values of a

and N as expressed by Eq. (8), the solutions κi(τ )(i = 1, 2, . . . , N) and

Ea(τ )/Ec of Eqs. (16) and (17) for any given value of n are determined

by Icf/Ec only. It can be found by examining Eq. (16) that if Icf/Ec is

multiplied by a constant C, then the solutions κ i(τ ) and Ea(τ )/Ec are

multiplied by C1/(n−1) and Cn/(n−1), respectively, so that im and q in

Eqs. (17) and (18) are multiplied by C1/(n−1) and C2/(n−1), respectively.

If a fixed Ec is expressed by Eq. (5) and subscripts 1 and 2 are used for

mutually scaled two cases, the scaling law may be stated as that if

(Ic f )2/(Ic f )1 = C, (19)

then

im,2/im,1 = C1/(n−1), q2/q1 = C2/(n−1). (20)

Since similar derivations may be applied to long superconductors of

any cross-section, the transport scaling law is generally valid.
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