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a b s t r a c t

In this paper crossed Andreev reflection (CAR) conductance is calculated in graphene-based Ferromagnetic-

Superconductor-Ferromagnetic heterostructure. In this spin-valve system, the ferromagnetic semi-infinite

layers act as leads. The leads are assumed to be half-metallic, i.e. the respective shift of the two spin sub-

bands at each lead is such that the electronic states of just one spin sub-band are present near the Fermi

level. In this graphene-based system, as in the corresponding metallic structures, if the leads are in anti-

parallel configuration, direct Andreev reflection (AR) and electron cotunneling(CT) are weak while crossed

Andreev reflection is considerable. The CAR reaches the maximum probability amplitude for thickness of

the superconducting layer that is comparable to the superconducting coherence length. The behavior of the

system at parallel configuration of the leads, contradicts with metallic FSF structures, so that an appreciable

amount of CAR probability is obtained. This is provided in graphene by the combination of CAR and spin-

dependent Klein tunneling through p-n barrier between different spin sub-bands of the two leads. In the

case that the Fermi energy of the first lead is in Dirac point the result is the enhanced CAR due to blocking CT

channels in both parallel and anti parallel configurations. The resulting nonlocal conductance oscillates with

L exhibiting a π-phase shift between the two configurations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid structures of ferromagnetic (F) and superconductors (S)

show very peculiar properties by providing possibility of controlled

interplay of ferromagnetism and induced superconducting correla-

tions [1–3]. Most of the peculiarities are attributed to the ferromag-

netic exchange field, h, that in Andreev reflection of an electron (hole)

from the ferromagnetic-superconductor interface – FS – to the hole

(electron) excitation of opposite spin, induces momentum change of

amount 2h/vF where vF is the Fermi velocity [4]. This momentum shift

of the correlated electron-hole is responsible for suppression of the

proximity effect at FS contacts [1,3] and spatially evanescent ampli-

tude of the induced superconducting correlations in F [1,5]. The prox-

imity effect in F may be altered significantly by the inhomogeneous

(anisotropic) exchange field direction. Enhanced induction of the su-

perconducting correlations in F by two domains with AP exchange

fields [1] and the generation of long range triplet superconducting

correlations by the non-collinear configuration of the exchange field

[6] have been demonstrated both experimentally and theoretically.

The nonlocal proximity effect takes place in FSF structures. This is

the superconducting counterpart of the spin-valve in spintronics, in

which the relative orientation of the exchange field of the lateral fer-
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romagnetic leads can be controlled by e.g. an external magnetic field

[7–9]. If the thickness of S layer is of the order of superconducting

coherence length, ξ ,the proximity effect which gives rise to AR, is not

the only process involved. Under this situation, a nonlocal process,

named crossed AR, occurs by which an electron excitation at one FS

interface is reflected as a hole at the distant second SF interface [9–

12]. This results in the absorption of a Cooper pair into the supercon-

ductor which is formed by two distant electrons from the two (ferro-

magnetic) leads. Such a FSF setup is ideal for producing spatially sep-

arated entangled electrons that beside being an outstanding aspect of

quantum physics, it is also of potential applications in quantum com-

munication (information) [13] and quantum computation [14,15].

In this paper, we study the nonlocal quantum transport in FSF

structures based on graphene [16–18]. Graphene is a semimetal with

conical valance and conduction bands in which the charge carriers

behave like 2D massless Dirac fermions with a pseudo-relativistic

chiral property [17–21]. The carrier type, (electron-like (n) or hole-

like(p)) and its density can be tuned by applying electrical gate or

doping the underlying substrate. An intriguing effect which arises

from such a Dirac like spectrum, is the reflectionless transmission of

an electron through a wide and high graphene p-n barrier called Klein

tunneling in analogy with the corresponding effect in quantum rela-

tivistic theory [22–25]. Currently intriguing properties of graphene

have been the subject of intense studies [26–28]. Among the
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others, peculiarity of the AR in graphene-based FS junctions has been

reported [29].

In this work, we show that the graphene-based FSF structure pro-

vides possibility for a unique combination of the nonlocal Andreev re-

flection and spin-dependent Klein tunneling, which makes this struc-

ture ideal for realizing entangled massless chiral electrons. To make

a comparison between graphene and common (metallic) spin-valve

structures with superconducting contact, we first notice that in most

of the theoretical models for NSN and FSF structures [10], point con-

tacts are assumed between S and lateral non-superconducting leads

in order to consider the superconducting pair potential, �, constant

inside S. However, the chirality of quasi particles in graphene permits

a large Fermi energy-difference between S and F leads that removes

the need for point contact [30]. Highly doped superconducting strips

of different widths can be produced by depositing superconducting

metallic electrodes on top of the graphene sheet [31]. In this circum-

stance, the large Fermi energy-mismatch between S and F regions

plays the role of a barrier in the interfaces that due to reflectionless

tunneling at normal incidence, manifest itself only at large incidence

angles.

The amplitude of CAR in graphene NSN [32] has very small con-

tribution to the nonlocal conductance owing to the presence of chi-

rality conserving processes which are AR and CT. To achieve remark-

able CAR, in ref. [33] the pseudo-diffusive transport through undoped

graphene has been employed to make CAR as large as CT. Like in

metallic FSF, in graphene FSF structures, the exchange potential can

partially or totally suppress CT and/or AR channels which are com-

peting phenomenon with CAR.

We realize that in contrast to the behavior of a metallic FSF struc-

ture in which only anti-parallel (AP) configuration favors CAR, the

corresponding graphene spin-valve, depending on the doping of F re-

gions, would allow appreciable CAR process for both parallel (P) and

anti-parallel configurations. When both of F regions are of the same

type of doping, say n-type, AP alignment of the exchange fields for

half metal case (h = EF ) blocks the competing processes of CT and di-

rect AR, thus the transport becomes pure CAR at zero energy. On the

other hand when ferromagnetic electrodes are of different n and p

types, the similar situation happens for P configuration. In both con-

figurations we suggest a spin-diode property for this device because

the situation is the same for the other spin-specie incident electron

from other F to the superconducting interface if an inverse voltage

(−V ) is applied say to F2 while F1 and S are grounded. We further

demonstrate the situation that one of the electrodes is undoped at

the Dirac point. In this case, we find that when the first electrode is

undoped the CAR with excitation energy,ɛ, has an appreciate ampli-

tude for both P and AP configurations for h = ∓(ε + EF ), because the

CT is blocked. Under this condition, for ε/EF = 0 in AP configuration

the CAR is of retro type and in P configuration it is of specular type.

The resulting conductance oscillates with varying the thickness of S,

which have relative π phase shift at AP and P cases which is a result

of the pseudo-spin reversal of the incident electron when hitting the

F1S interface.

2. Model and theory

We consider a planar spin-valve structure, shown schematically in

Fig. 1, in which a wide superconducting strip, S, of length L connects

two semi-infinite ferromagnetic leads F1 and F2. The whole system is

embedded on graphene. The ferromagnetic leads are characterized in

the Stoner model by the exchange potential h(�r) = �(−x) ± �(x − L)
for P (+) and AP (–) alignments, respectively, where �(x) is the Heav-

iside step function. Such a ferromagnetic region can be produced by

depositing ferromagnetic metal electrodes, like Co [34], on top of the

graphene sheet or by doping the substrate by magnetic atom impu-

rities [35]. In addition to the proximity-induced correlations [36], in-

trinsic ferromagnetism was also predicted to exist in graphene sheets

Fig. 1. All on graphene model consists of two ferromagnetic leads connected by super-

conducting layer.CAR may be of retro or specular types. n-S-n, p-S-n and D-S-n band

structures are shown.

[37] and nanoribbons [38]. The Fermi energy in S and F leads can be

modulated by doping or using several electrostatic local gates. We

consider S strip to be highly doped with a Fermi energy, EFs much

larger than in leads, EF1, 2. This coincides with the condition of the re-

ported experiment [31] in which the superconductivity is induced by

the proximity to AlTi metallic superconductor. The condition EFs �
EF1, 2 justifies the assumption of a step-like variation of the supercon-

ducting pair potential �(�r) = ��(x)�(−x + L) [30].

We employ scattering formalism to study transport properties of

quasi-particles in this spin-valve structure. Within this formalism,

resonant states between two wide SF1 and SF2 interfaces are also

taken into account properly. The quasi-particles’ wave functions are

the eigenfunctions of Dirac Bogoliubov de Gennes (DBdG) equation

that describes superconducting correlation between massless Dirac

fermions with different valley indices. Due to the valley degener-

acy, only one set of the four-dimensional (for 2 components of each

electron-like and hole-like pseudo-spins) equations will be consid-

ered that describes coupling of a spin σ (σ = ±1) electron from one

valley to a spin σ̄ (σ̄ = −σ ) hole from the other valley. In the presence

of one-particle exchange interaction, it takes the following form;(
Ĥ0 − σhÎ �Î

�Î −
(
Ĥ0 − σ̄hÎ

))(
uσ

vσ̄

)
= εσ

(
uσ

vσ̄

)
(1)

where Ĥ0 = ih̄vF (σ̂x∂x + σ̂y∂y) − EF Î is the Dirac Hamiltonian and uσ

and vσ̄ are the BCS coherence factors belonging to different valleys

of the k-space and ɛσ > 0 is the excitation energy measured from the

Fermi energy, denoted by EF = EFs,1,2 in S and F1,2 respectively; σ̂x and

σ̂y are Pauli matrices in the pseudo spin space of the two sublattices

and Î is2-dimensional unit matrix. By diagonalizing Hamiltonian the

energy eigenvalues are obtained. In F1 and F2 the excitation energy as

a function of the two dimensional wave vector kσ = (kσ , qσ ) depends
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