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a b s t r a c t

When a type II superconductor with slab geometry is subjected to a magnetic field which is antisymmet-
ric with respect to the middle of the slab the induced vortex matter consists of vortex–antivortex pairs or
double kinks. These double kinks and their role in the generation of a considerable asymmetry in the crit-
ical current of the slab are addressed here both numerically, in the framework of time dependent
Ginzburg Landau model, and semi-analytically, using the concept of surface energy barriers for flux entry
and flux exit.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Superconducting rectifiers [1–16] are based on superconducting
devices that exhibit asymmetric voltage–current [V(I)]
curves. Asymmetric VðIÞ curves have been reported [9–15] in
Ferromagnet–Superconductor hybrids on the micron scale. The
asymmetry in the critical [17] currents has also been predicted
and observed in single thin superconducting strips with different
edges [18,19] (asymmetric surface barriers), in mesoscopic strips
with turns [20–23] (current crowding) subjected to homogeneous
magnetic field applied perpendicular to the strip, and in curved
mesoscopic [24] superconducting thin strips in parallel magnetic
field. Very recently, we have experimentally demonstrated [25]
that a marked asymmetry in the critical currents can be also exhib-
ited by a single superconducting slab having plano-convex cross
section when subjected to a homogeneous magnetic field applied
parallel to the substrate.

Here we theoretically address the physics of a type II supercon-
ductor with slab geometry [17] subjected to an antisymmetric mag-
netic field applied parallel to the slab and perpendicular to the
transport current density. Being the applied field antisymmetric
with respect to middle of the slab, in this system the vortex matter
[26] always consists of vortex–antivortex pairs or double kinks
that play a significant role in the generation of an asymmetry in
the critical current that makes the addressed system possibly

interesting as a superconducting rectifier. The double kink
mechanism is addressed here both numerically, in the framework
of time-dependent Ginzburg Landau model [17], and
semi-analytically, in the framework of a simple extension of
surface barrier models.

The analytical investigation of energy barriers for flux entry and
flux exit in superconducting slabs or strips subjected to an homo-
geneous applied magnetic field, also in the presence of a transport
current, is a subject reported [17,21,27–33] in the literature.
However, to our knowledge, the analysis of surface barriers
specialized to the slab geometry in the presence of both transport
current and inhomogeneous magnetic field, is a subject not
addressed before in the literature and it represents the main
novelty of the present work. Moreover, numerical investigations
of the magneto-transport properties of superconductors with slab
geometry in the specific framework of Ginzburg Landau model
have been reported [34–37,31,38] for the case of homogeneous
applied field, whereas in the present work numerical simulations
for the different case of an inhomogeneous applied field are
reported.

The work is organized as follows. In Section 2 the transport
properties of the superconducting slab in inhomogeneous mag-
netic field are numerically addressed in the framework of
time-dependent Ginzburg Landau model [17], that is reliably used
[34–37,39–41] whenever direct computation of voltage–current
curves of a type II superconductor in the presence of magnetic field
is needed. In Section 3 we give an approximated analytical
description of the surface barriers and the forces experienced by
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the double kinks and their role in the generation of asymmetric
transport properties of the slab. A brief summary of main results
is given in Section 4.

2. Model and numerical results

The transport properties of the superconducting slab are
numerically investigated using the time-dependent Ginzburg–
Landau (TDGL) model [34–37,39,41] that reads:

u
@w
@t
¼ r� iAð Þ2wþ 1� T � wj j2

� �
w; ð1Þ

@A
@t
¼ 1

2i
w�rw� wrw�ð Þ � wj j2A� j2r� ðr� A�HÞ: ð2Þ

Here w ¼ wðx; y; zÞ is the complex order parameter, A ¼ ðAx;Ay;AzÞ is
the vector potential, H is the applied magnetic field, T is the temper-
ature, j is the Ginzburg–Landau parameter and the coefficient
u ¼ 5:79 controls the relaxation of w. All physical quantities are
measured in dimensionless units: the coordinates are in units of
the coherence length nð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�hD=8kBTc

p
, with Tc the critical tem-

perature, and D is the diffusion constant. Temperature is in units
of Tc . Time is measured in units of the relaxation time sð0Þ ¼
4prnkð0Þ2=c2 (rn is the normal-state conductivity, kð0Þ ¼ jnð0Þ
the magnetic field penetration depth, with j the G–L parameter).
The order parameter is in units of Dð0Þ ¼ 4kBTc
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u
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=p, i.e., the super-
conducting gap at T ¼ 0 which follows from Gor’kov’s derivation of
the Ginzburg–Landau equations. The vector potential is measured
in units U0=2pnð0Þ (U0 ¼ ch=2e is the quantum of magnetic flux).
In these units the magnetic field is scaled with Hc2ð0Þ ¼
U0=2pnð0Þ2 and the current density with j0ð0Þ ¼ cU0=8p2kð0Þ2nð0Þ.
We use the model as stated in Ref. [35], but our normalization is rel-
ative to the variables at T ¼ 0. This results in the explicit inclusion
of normalized temperature T in the first equation, as found, e.g., in
Refs. [39,41]. The first equation governs the relaxation of the super-
conducting order parameter w and the second equation is the
Maxwell equation for magnetic induction field B ¼ r� A.

Following commonly used assumptions and notations (see, e.g.,
Ref. [37]), in the Cartesian reference frame shown in the lower left
inset of Fig. 1 our superconducting slab is assumed to have a finite
normalized width (or thickness) in the x direction w �
W=nð0Þ > 2j with j quite larger than 1=

p
2 (definitely type II

superconductor) and normalized extension in the y and the z

directions much greater than width w, such that the extension in
the y and the z directions can be mathematically assumed as infi-
nite. The transport current density is directed as the y axis,
J ¼ ð0; J;0Þ. The applied magnetic field is directed as the z axis,
H ¼ ð0; 0;HzÞ, and it is assumed to be uniform along y and z but
antisymmetric with respect to the middle of the slab, i.e.,
Hzð�xÞ ¼ �HzðxÞ. As a simple analytical expression we take
HzðxÞ ¼ H sinðx=RÞ. An example of such an antisymmetric magnetic
field distribution is given in the main panel of Fig. 1. To simplify the
analysis, we assume that the maximum of the applied field
strength falls out of the edges x ¼ �w=2 of the slab. This
implies that relation R > w=p should be satisfied. In the used
geometry the dependence of physical quantities on z direction
can be neglected [37] and therefore the problem becomes
two-dimensional, as shown in the lower right inset of Fig. 1.
Hence, the general model Eqs. (1) and (2) reduces to:
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is the two-dimensional gradient operator and
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supercurrent density Js. Notice that the external field described by
Hz ¼ H sinðx=RÞ explicitly appears both in the bulk of Eq. (4) and
in the boundary conditions for the vector potential A. To simulate
a sample extension in the y direction much larger than the
sample width, we apply periodic boundary conditions [37] in the
y-direction, both for the vector potential and the order parameter:
Ayðx; yþK=2Þ ¼ Ayðx; y�K=2Þ and wðx; yþK=2Þ ¼ wðx; y�K=2Þ,
where K is the spatial period along y-direction (see Fig. 1). The
superconductor–vacuum boundary [17] conditions for the order
parameter are instead applied in the x-direction. These conditions,
stating that the normal component of the supercurrent is zero at
the boundary C of the superconductor (supercurrent cannot exit
from the superconductor) are mathematically expressed [17] as
ðr2D � iAÞw � njC ¼ 0. Here these conditions simplify in
rxwjx¼�w=2 ¼ 0, meaning Jsxjx¼�w=2 ¼ 0. The bias current is
introduced through the boundary condition for A in the z-direction:
ðr � AÞz

��
x¼�w=2 ¼ Hzðx ¼ �w=2Þ � HJ , where Hzðx ¼ �w=2Þ is the z

component of the applied magnetic field and HJ ¼ Jw=2j2 is the z
component of magnetic field generated by the bias current density
J (self-field of transport current) at the edges of the slab.

We choose parameters j ¼ 5; T ¼ 0:8; w ¼ 40, R ¼ 1:6w, and
the spatial period along y-direction K ¼ 20. To numerically solve
the system of Eqs. (3) and (4) we apply a finite-difference represen-
tation for the order parameter and vector potential on a uniform
Cartesian space grid with step size 0.5 and we use the link variable
approach [35,36] and the simple Eulero method [42] with time
step Mt ¼ 0:002 to find w and A. Initial conditions are wj j ¼ 1 and
A ¼ 0. The behavior of the system is studied on a large time scale
when time-averaged values no longer depend on time.

Before we proceed, we would notice that the slab geometry has
been often used to extract significant physics in fundamental
textbooks [17,43–45] of superconductivity, in seminal works
[46,47] on the subject of flux entry and flux exit, and in
magneto-transport properties of superconductors in the specific
framework [34–37,31,38] of Ginzburg Landau model. This is
because it describes with a good approximation a very common
experimental configuration: a superconducting film of finite thick-
ness (eg., up to tenths of a micron) with lateral dimensions very
large (e.g., tens or hundred of microns) with respect to its thickness
and subjected to a magnetic field oriented parallel to the substrate.

Fig. 1. In the main panel there is plotted the spatial distribution of the magnetic
field applied to the superconducting slab sketched in the left inset. The extension of
the slab in the y and z directions is assumed much larger than width W, so that it
can be considered infinite at desired approximation. In the right inset there is
shown the 2D simplified representation of the slab we have adopted.
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