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a b s t r a c t

Transport ac losses of a rectangular thin strip obeying relation E=Ec ¼ ðJ=JcÞ
n with a fixed critical current Ic

and n ¼ 5;10;20;30, and 40 are accurately computed at a fixed frequency f as functions of the current
amplitude Im. The results may be interpolated and scaled to those at any values of Ic ; f , and
5 6 n 6 40. Normalized in the same way as that in Norris’ analytical formula derived from the critical-
state model and converting f to a critical frequency f c , the modeling results may be better compared with
the Norris formula and experimental data. A complete set of calculated modeling data are given with
necessary formulas to be easily used by experimentalists in any particular case.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soon after Bean assumed in the critical-state (CS) model a con-
stant critical current density Jc to calculate the magnetization
curve of a hard superconducting cylinder [1], London reported
his derivation on the transport ac loss of a hard superconducting
cylinder based on the same assumption [2]. For a long cylinder of
radius a carrying a transport current IðtÞ ¼ Im sin 2pft, London
obtained a relation between the ac loss Q per cycle per unit length
and Im as

q ¼ ð2� imÞim þ 2ð1� imÞ lnð1� imÞ; ð1Þ

where

q � 2pQ=l0I2
c ; im � Im=Ic; ð2Þ

Ic ¼ pa2Jc being the critical current. The validity of this formula was
later extended by Norris to an elliptical bar with any values of
semi-axes a and b [3]. In recent studies on 1G high-temperature
superconducting (HTS) tapes prepared by the powder-in-silver tube
technique, Eq. (1) for thin elliptical tapes has been well verified by
both numerical calculations and analytical derivation [4,5]. Norris
also derived a formula for a rectangular thin strip [3], and with
the same normalization as in Eq. (2) it is expressed by

q ¼ 2½ð1þ imÞ lnð1þ imÞ þ ð1� imÞ lnð1� imÞ � i2
m�: ð3Þ

This equation is more relevant to the 2G HTS tapes, for which a
HTS film is epitaxially deposited on a metallic substrate with a
number of buffer layers in between.

It has been shown that the measured q vs im curves of HTS tapes
are roughly located around the modeling curves calculated from
Eqs. (1)–(3) [5–15], which means that the CS model is basically
valid for such tapes. However, this comparison between experi-
mental and modeling results is somewhat ambiguous, since the
relations between current density J and electrical field E in the
actual HTS tapes and in the CS model are significantly different.
In the CS model, E ¼ 0 occurs when jJj < Jc and a finite E appears
when jJj ¼ Jc . As a result, Ic for a tape is a fixed value independent
of the voltage along the tape and the ac loss Q is f independent. On
the other hand, in transport current–voltage (I–V) measurements
of most HTS tapes, I changes with V in the full penetration regime
following roughly a power law (PL), V / In, so that Ic has to be
defined as that when E ¼ V=l ¼ Ec , where l is the distance between
both voltage taps and criterion Ec ¼ 10�4 V=m is routinely defined.
Related to this, ac loss Q is intrinsically f dependent.

The PL I–V curve comes from a PL EðJÞ relation, which is a char-
acteristic of collective flux creep and expressed as [16–19]

E ¼ ðEc=JcÞ j J=Jcj
n�1J: ð4Þ

The ac loss Q and I–V curve of a cylinder obeying PL Eq. (4) have
been calculated by Chen and Gu [20,21], using a numerical
technique proposed by Brandt and developed for the transport case
by Rhyner and Yazawa et al. [22,23]. A scaling law has been derived
in terms of vector potential, so that for any given value of n, the
qðimÞ function calculated at fixed Ic and f may be used for any
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values of Ic and f. In particular, the PL qðimÞ is scaled to the CS qðimÞ
at a point q ¼ im ¼ 1 by converting f to a critical frequency f c for
any value of n between 5 and 30, so that the experimental results
may be unambiguously compared with both the CS and PL models.
We emphasize that f c to be called the critical frequency is not
because this f c is a characteristic of CS curve itself, which is f inde-
pendent, but because the highly f dependent PL curve is converted
to a unique one for each value of n that has a common character-
istic point with the critical-state curve.

We will calculate the ac loss for a rectangular thin strip in the
present work and show numerically the validity of the above-
mentioned scaling law. Together with the results for cylinders,
the calculated results will be compared with experimental data
of HTS tapes.

In Appendix A, the derivations and discussions on the scaling
law presented in [20] for a cylinder will be improved with impor-
tant corrections. This is necessary since it is still difficult for us to
completely derive the same scaling law for a thin strip. Since the
scaling law for the magnetic case is sample shape independent,
as stated by Brandt in [18], we believe that the scaling law for
the transport case derived for a cylinder should also be valid for
a thin strip.

2. Computation of ac loss

2.1. Computation procedure

The studied rectangular thin strip is placed along the z axis with
an arbitrarily fixed width w ¼ 10 mm along the x axis and a very
small thickness d� w. It is characterized by a PL EðJÞ relation as
Eq. (4). We calculate Q at different values of n; Im=Ic , and f by
applying the procedure described in [23]. Defining the line density
of the current K ¼ Jd, Eq. (4) is written

E ¼ ðEc=KcÞ j K=Kcjn�1K; ð5Þ

where Kc is the critical current line density. The critical current and
frequency are fixed as Ic ¼ Jcwd ¼ Kcw ¼ 60 A and f ¼ 5 and 50 Hz.
Dividing the width w into N equal elements, each centered at
xiði ¼ 1;2; . . . ;NÞ, the computation is started by calculating a matrix
of components [19]

Qij ¼ ln jxi � xjj=2p ðj – iÞ
¼ lnðw=2pNÞ=2p ðj ¼ iÞ:

ð6Þ

This matrix is defined for converting the current line density
Kjðj ¼ 1;2; . . . ;NÞ to vector potential Aiði ¼ 1;2; . . . ;NÞ by

Ai ¼ �
l0w

N

XN

j¼1

Q ijKj; ð7Þ

and the components of its reciprocal Q�1
ij are used for calculating

from Ki at time kDtðk ¼ 0;1;2; . . .Þ; Kk
i , to that at time

ðkþ 1ÞDt; Kkþ1
i , by

Kkþ1
i ¼ Kk

i þ
NDt
l0w

XN

j¼1

Q�1
ij Kk

j qðK
k
j Þ � Ek

e

h i
: ð8Þ

The initial condition is set as K0
i ¼ 0ði ¼ 1;2; . . . ;NÞ. In Eq. (8),

nonlinear resistivity is derived from Eq. (5) as

qðKk
j Þ ¼ ðEc=KcÞ j Kk

j =Kcjn�1
; ð9Þ

and Ek
e is the external electrical field and is determined at each

moment ðkþ 1ÞDt to satisfy the following total current condition
with accuracy of 0:001� Im:

XN

i¼1

Kkþ1
i w=N ¼ Im sin 2pf ½ðkþ 1ÞDt�: ð10Þ

The loss per meter length at each time step kDt;Q k, is calculated
by

Qk ¼
XN

i¼1

ðKk
i Þ

2
qðKk

i Þ
wDt

N
: ð11Þ

Many time steps are continuously calculated, and the final loss
per cycle per meter length is calculated by

Table 1
q of a rectangular thin strip of width w ¼ 10 mm and critical current Ic ¼ 60 A as a
function of im and n, numerically calculated at f ¼ 5 Hz.

im n ¼ 5 10 20 30 40

0.1 0.000270 0.0001138 0.0000681 0.0000549 0.0000487
0.2 0.00281 0.00144 0.000953 0.000813 0.000742
0.3 0.01121 0.00647 0.00458 0.00397 0.00373
0.4 0.0304 0.01910 0.01414 0.01254 0.01175
0.5 0.0671 0.0450 0.0346 0.0310 0.0292
0.6 0.1300 0.0928 0.0736 0.0668 0.0633
0.7 0.231 0.1750 0.1433 0.1314 0.1250
0.8 0.385 0.312 0.264 0.245 0.234
0.85 0.488 0.412 0.356 0.332 0.318
0.9 0.612 0.541 0.480 0.451 0.444
0.95 0.760 0.708 0.654 0.624 0.604
1 0.937 0.925 0.906 0.893 0.884
1.05 1.150 1.232 1.437 1.747 2.22
1.1 1.405 1.699 2.77 5.23
1.2 2.09 3.52
1.3 3.09 7.66

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 1

10 -4

10 -3

10 -2

10 -1

10 0

10 1

q

Open symbols: Ic=60A, f=5Hz directly calculated

Solid symbols: Ic=60A, f=50Hz scaled

Crosses: Ic=20A, f=50Hz scaled

n = 5, 10, 20, 30

(a)

5 10 15 20 25 30 35 40
400

450

500

550

600

650

700

750

800

 im

I cf c (
A

H
z)

n

(b)

Fig. 1. (a) The qðimÞ functions directly calculated at Ic ¼ 60 A and f ¼ 5 Hz
expressed by open symbols with connected lines, compared with those directly
calculated at Ic ¼ 60 A and f ¼ 50 Hz and then scaled to Ic ¼ 60 A and f ¼ 5 Hz with
C ¼ 0:1, expressed by solid symbols, and with those directly calculated at Ic ¼ 20 A
and f ¼ 50 Hz and then scaled to Ic ¼ 60 A and f ¼ 5 Hz with C ¼ 0:3, expressed by
crosses. Arrow indicates the direction of increasing n. (b) Ic f c as a function of n.
Symbols are obtained from the comparison of the scaled data at n ¼ 5;10;20;30
and 40 with Norris Eq. (3), and their fitting curve is expressed by Eq. (14).
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