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a b s t r a c t

Within the framework of the kinetic energy driven superconducting mechanism, the doping and temper-
ature dependence of the asymmetric tunneling in cuprate superconductors is studied by considering the
interplay between the superconducting gap and normal-state pseudogap. It is shown that the asymmetry
of the tunneling spectrum in the underdoped regime weakens with increasing doping, and then the sym-
metric tunneling spectrum recovers in the heavily overdoped regime. The theory also shows that the
asymmetric tunneling is a natural consequence due to the presence of the normal-state pseudogap.

� 2014 Elsevier B.V. All rights reserved.

Cuprate superconductors are complex materials that exhibit a
variety of phases determined not only by temperature but also
by charge carrier doping [1–3]. The pairing of electrons in the con-
ventional superconductors [4] occurs at the superconducting (SC)
transition temperature Tc, creating an energy gap in the electron
excitation spectrum that serves as the SC order parameter. How-
ever, in cuprate superconductors, the normal-state pseudogap
exists between Tc and the temperature T�, with T� is called as
the normal-state pseudogap crossover temperature [1–3].
Although Tc takes a domelike shape with the underdoped and
overdoped regimes on each side of the optimal doping, where Tc

researches its maximum [5], T� is much larger than Tc in the
underdoped regime, then it monotonically decreases with increas-
ing doping, and seems to merge with the Tc in the overdoped
regime, eventually disappearing together with superconductivity
at the end of the SC dome [1–3]. After intensive investigations over
more than two decades, it has become clear that many of the unu-
sual physical properties in cuprate superconductors can be attrib-
uted to the emergence of the normal-state pseudogap [1–3].

The complexity in cuprate superconductors is reflected in the
quasiparticle excitation spectra [6–8]. The scanning tunneling
microscopy/spectroscopy (STM/STS) is a powerful tool to study
the quasiparticle properties in cuprate superconductors [7,8], since
its remarkable energy and spatial resolution makes it particularly
well suited for cuprate superconductors, which are characterized
by small energy and short length scales. More accurately, the
STM/STS data are proportional to the local density of quasiparticle
excitations, and the accounting of their distribution can provide

important insight into the nature of cuprate superconductors. In
the conventional superconductors, the most complete and con-
vincing evidence for the electron–phonon SC mechanism came
from the tunneling spectrum [4,9]. During the last two decades,
the tunneling study of cuprate superconductors has revealed many
crucial results [7,8,10–13], where the main feature of the differen-
tial tunneling conductance spectrum is the quasiparticle excitation
gap. Moreover, the presence of the excitations within the SC gap,
linearly increasing with energy around V ¼ 0, indicates that the
SC gap has nodes, and therefore presumably d-wave symmetry.
In particular, the most remarkable feature about the tunneling in
cuprate superconductors is the fact that the tunneling conductivity
between a metallic point and a cuprate superconductor is mark-
edly asymmetric between positive and negative voltage biases
[14].

A challenging issue for theory is to explain the asymmetric tun-
neling in cuprate superconductors. Recently, we [15] have dis-
cussed the interplay between the normal-state pseudogap state
and superconductivity in cuprate superconductors within the
framework of the kinetic energy driven SC mechanism [16], where
both the charge carrier pairing state in the particle–particle chan-
nel and normal-state pseudogap state in the particle-hole channel
arise from the same interaction that originates directly from the
kinetic energy by exchanging spin excitations, then there is a coex-
istence of the SC gap and normal-state pseudogap in the whole SC
dome. Furthermore, both the normal-state pseudogap and the SC
gap are dominated by one energy scale, and they are the result
of the strong electron correlation. Within this microscopic SC the-
ory, some unusual properties of cuprate superconductors in the
pseudogap phase have been studied [17], including the humplike
anomaly of the specific-heat, the particle-hole asymmetry elec-
tronic state, and the unusual evolution of the Fermi arc length with
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doping and temperature, and the results are qualitatively consis-
tent with the experimental results. In this paper, we study the dop-
ing and temperature dependence of the asymmetric tunneling in
cuprate superconductors along with this line. by considering the
interplay between the normal-state pseudogap state and super-
conductivity, we qualitatively reproduce some main features of
the STM/STS measurements on cuprate superconductors in the
whole doping range from the underdoped to heavily overdoped
[7,8,10–13]. In particular, we show that the remarkably asymmet-
ric tunneling in cuprate superconductors is a natural consequence
due to the presence of the normal-state pseudogap.

Although there are hundreds of cuprate SC compounds, they all
share a layered structure which contains one or more copper–
oxygen planes [6]. In this case, it has been argued strongly [18] that
the low-energy physics of these planes is described by the two-
dimensional t–J model acting on the Hilbert space with no doubly
occupied sites, where the kinetic energy includes the nearest-
neighbor (NN) and next NN hopping on a square lattice with the
matrix elements denoted as t and t0, respectively, while the antifer-
romagnetic (AF) Heisenberg term with the exchange coupling con-
stant J describes the AF coupling between localized spins. To
incorporate the electron motion within the restricted Hilbert space
without double electron occupancy, we [19] have developed the
charge-spin separation (CSS) fermion-spin theory, where the con-
strained electron operators are decoupled as Cl" ¼ hyl"S

�
l and

Cl# ¼ hyl#S
þ
l , with the spinful fermion operator hlr ¼ e�iUlr hl that

describes the charge degree of freedom of the electron together
with some effects of spin configuration rearrangements due to
the presence of the doped hole itself (charge carrier), while the
spin operator Sl keeps track of the spin degree of freedom of the
electron, then the electron single occupancy local constraint is sat-
isfied in analytical calculations. In this CSS fermion-spin represen-
tation, the t–J model can be expressed explicitly as,

H ¼ t
X

lĝ

ðhylþĝ"hl"S
þ
l S�lþĝ þ hylþĝ#hl#S

�
l SþlþĝÞ � t0

X
lŝ

ðhylþŝ"hl"S
þ
l S�lþŝ

þ hylþŝ#hl#S
�
l SþlþŝÞ � l

X
lr

hylrhlr þ Jeff

X
lĝ

Sl � Slþĝ; ð1Þ

where the summations lĝ and lŝ are carried over NN and next NN
bonds, respectively, Sl ¼ ðSx

l ; S
y
l ; S

z
l Þ are spin operators, S�l and Sþl

are the spin-lowering and spin-raising operators for the spin

S ¼ 1=2, respectively, l is the chemical potential, Jeff ¼ ð1� dÞ2J,

and d ¼ hhylrhlri ¼ hhyl hli is the charge carrier doping concentration.
Superconductivity, the dissipationless flow of electrical current,

is a striking manifestation of a subtle form of quantum rigidity on
the macroscopic scale, where a central question is how the SC-state
forms? It is all agreed that the electron Cooper pairs are crucial for
the form of the SC-state because these electron Cooper pairs
behave as effective bosons, and can form something analogous to
a Bose condensate that flows without resistance [4,20]. This fol-
lows a fact that although electrons repel each other because of
the Coulomb interaction, at low energies there can be an effective
attraction that originates by the exchange of bosons. In the conven-
tional superconductors, these exchanged bosons are phonons that
act like a bosonic glue to hold the electron pairs together, then
these electron Cooper pairs condense into a coherent macroscopic
quantum state that is insensitive to impurities and imperfections
and hence conducts electricity without resistance [4]. For cuprate
superconductors, we [16] have shown in terms of Eliashberg’s
strong coupling theory [21] that in the doped regime without an
AF long-range order the charge carriers are held together in pairs
in the particle–particle channel by the effective interaction that
originates directly from the kinetic energy of the t–J model (1) by
the exchange of spin excitations, then the electron Cooper pairs
originating from the charge carrier pairing state are due to the

charge-spin recombination, and their condensation reveals the SC
ground-state. In particular, this SC-state is controlled by both SC
gap and quasiparticle coherence, which leads to that the maximal
Tc occurs around the optimal doping, and then decreases in both
underdoped and overdoped regimes. Furthermore, this same inter-
action also induces the normal-state pseudogap state in the parti-
cle-hole channel [15]. Since this normal-state pseudogap is closely
related to the quasiparticle coherent weight, and therefore it sup-
presses the spectral weight. Following our previous discussions
[15,16], the full charge carrier diagonal and off-diagonal Green’s
functions of the t–J model (1) in the SC-state are evaluated as,

gðk;xÞ¼ 1

x�nk�RðhÞ1 ðk;xÞ� �D2
hðkÞ=½xþnkþRðhÞ1 ðk;�xÞ�

; ð2aÞ

Cyðk;xÞ¼�
�DhðkÞ

½x�nk�RðhÞ1 ðk;xÞ�½xþnkþRðhÞ1 ðk;�xÞ�� �D2
hðkÞ

; ð2bÞ

where nk ¼ Ztv1ck � Zt0v2c0k � l is the mean-field (MF) charge
carrier spectrum with the spin correlation functions v1 ¼ hS

þ
l S�lþĝi

and v2 ¼ hS
þ
l S�lþŝi, ck ¼ ð1=ZÞ

P
ĝeik�ĝ; c0k ¼ ð1=ZÞ

P
ŝeik�ŝ; Z is the

number of the NN or next NN sites on a square lattice, the effective
charge carrier pair gap �DhðkÞ is closely associated with the

self-energy RðhÞ2 ðk;xÞ in the particle–particle channel as
�DhðkÞ ¼ RðhÞ2 ðk;x ¼ 0Þ, and can be expressed explicitly as a d-wave

form �DhðkÞ ¼ �Dhc
ðdÞ
k with cðdÞk ¼ ðcos kx � cos kyÞ=2, while the self-

energy RðhÞ1 ðk;xÞ in the particle-hole channel renormalizes the MF
charge carrier spectrum, and can be rewritten approximately as

RðhÞ1 ðk;xÞ � ½2�DpgðkÞ�
2
=½xþMk�, where Mk is the energy spectrum

of RðhÞ1 ðk;xÞ, and �DpgðkÞ is the effective normal-state pseudogap.
With these above definitions, the Green’s functions in Eq. (2) are
obtained explicitly as [15],

gðk;xÞ ¼
X
m¼1;2

U2
mhk

x� Emhk
þ V2

mhk

xþ Emhk

 !
; ð3aÞ

Cyðk;xÞ ¼
X
m¼1;2

ð�1Þm amk
�DhðkÞ

2Emhk

1
x� Emhk

� 1
xþ Emhk

� �
; ð3bÞ

where m ¼ 1; 2; amk; Mk; �DpgðkÞ; �Dh, the coherence factors Umhk

and Vmhk, and the charge carrier quasiparticle spectrum Emhk have
been given in Ref. [15].

In the framework of the CSS fermion-spin theory [19], the phys-
ical electron operator is given by a composite one. In this case, the
d-wave charge carrier pairing state based on the exchange of the
spin excitations also leads to form a d-wave electron Cooper pair-
ing state [16] due to the charge-spin recombination [22]. This fol-
lows a fact that the electron Green’s function is a convolution of
the spin Green’s function and charge carrier Green’s function in
the CSS fermion-spin representation [23]. In particular, the elec-
tron diagonal Green’s function in the present case is evaluated
explicitly in terms of the charge carrier diagonal Green’s function
(3a) and spin Green’s function Dð0Þ�1ðk;xÞ ¼ ðx2 �x2

kÞ=Bk as [17],

Gðk;xÞ ¼ 1
N

X
p;m¼1;2

Bpþk

2xpþk
U2

mhp
nFðEmhpÞ þ nBðxpþkÞ
xþ Emhp �xpþk

��

þ 1� nFðEmhpÞ þ nBðxpþkÞ
xþ Emhp þxpþk

�

þ V2
mhp

1� nFðEmhpÞ þ nBðxpþkÞ
x� Emhp �xpþk

þ nFðEmhpÞ þ nBðxpþkÞ
x� Emhp þxpþk

� ��
;

ð4Þ

where nBðxÞ and nFðxÞ are the boson and fermion distribution
functions, respectively, while the spin excitation spectrum xp and
the function Bp have been given in Ref. [23].
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