Physica C 494 (2013) 85-88

Contents lists available at SciVerse ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Optimization of the fabrication process for high trapped field MgB₂ bulks

쀍

M. Muralidhar^{a,*}, A. Ishihara^a, K. Suzuki^a, Y. Fukumoto^a, Y. Yamamoto^b, M. Tomita^a

^a Railway Technology Research Institute (RTRI), Applied Superconductivity, Materials Technology Division, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan ^b Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-656, Japan

ARTICLE INFO

Article history: Accepted 8 April 2013 Available online 4 May 2013

Keywords: MgB₂ X-ray diffraction Microstructure analysis Trapped field

ABSTRACT

The optimization of the sintering conditions of disk shaped bulk MgB₂ superconductors with respect to the trapped field is described. Series of samples were prepared by varying the sintering temperatures between 700 and 950 °C. The temperature range was divided into three regions, namely the low (<750 °C), medium (<825 °C), and high (>850 °C) temperature region. Scanning electron microscopy and X-ray diffraction indicated that homogenous single phase MgB₂ bulks were produced in the medium sintering temperature range. At this processing temperature range the highest trapped field was also achieved. Samples of 20 mm in diameter and 7 mm thick produced at 775 °C exhibited trapped field of 1.50 T at 20 K.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of superconductivity in MgB₂ at 39 K [1] an enormous effort has been devoted to processing, characterization, and application of MgB₂ material [2,3]. The superconducting transition temperature of MgB₂ is significantly lower than in YBa₂Cu₃₋ Oy "Y-123". However, MgB2 possesses several advantages in comparison to Y-123, like much smaller anisotropy, high critical current density (I_c) not hindered by grain boundaries [4], and low cost of the raw material. These features make this material very promising for a number of industrial applications [5]. Further important issues are the shorter processing time and no need of oxygenation. The MgB₂ disks can be used in a similar manner as melt-textured Y-123 bulks [6]. They can be used as a magnetic field source in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), fault current limiters, in the pumps for liquid gas pumping, and shielding screens. A number of experiments have been already performed to prepare good quality and high density MgB₂ bulks and wires. High pressure techniques were used to produce a highly dense MgB₂ material [6]. An easy MgB₂ sintering route by the reactive Mg-liquid infiltration (RLI) process was reported. This infiltration process does not require an external pressure to be applied to the reacting material and still produces highly dense final products [7]. It has been shown that MgB₂ bulk magnets could be used at 20 K [8-11]. High critical current density (J_c) and good homogeneity are essential for high trapped field magnets. Superconducting properties of a bulk material depend on the processing conditions, like the synthesis temperature, holding

E-mail address: miryala1@rtri.or.jp (M. Muralidhar).

time, annealing atmosphere, additives etc. In order to achieve the high trapped field in MgB₂, optimization of the synthesis temperature is essential.

In this paper, we report on several sets of large bulk MgB₂ blocks prepared by a simple solid state reaction route. To optimize the highest trapped field of the bulk MgB₂, we fixed the initial composition of Mg:B to 1:2, holding time was fixed to 3 h, annealing atmosphere was pure argon and the synthesis temperature was varied from 700 to 950 °C in steps of 25 °C. The phase and microstructure were estimated by X-ray diffraction (XRD) and by scanning electron microscope (SEM). Trapped field measurements performed from 20 K to 40 K showed that the processing temperature was very important for obtaining high trapped fields.

2. Experimental

The Mg and B powders used in the present study were purchased from Furuchi Chemical Corporation, Japan. Polycrystalline MgB₂ samples were made using the in situ solid state reaction. High-purity commercial powders of Mg metal (99.9% purity, 200 meshes) and amorphous B powder (99% purity, 300 meshes) were mixed in a nominal composition of MgB₂. The starting powders were thoroughly ground in a normal glove box in nitrogen atmosphere. The low cost glove box without vacuum facility and nitrogen atmosphere were chosen to reduce the production cost of the MgB₂ material. The powder mixture was pressed into pellets of 20 mm in diameter using a hydraulic press. Eventually, a Ti sheet was wrapped around the tightly pressed pellets, which were then sintered in argon atmosphere in a tubular furnace. The samples were prepared in a single step heat process with the following heat treatment profile: The sintering temperature chosen between

^{*} Corresponding author. Address: 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan. Tel.: +81 42 573 7297; fax: +81 42 573 7360.

^{0921-4534/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.physc.2013.04.012

700 °C and 950 °C was achieved in 5 h after the start from the ambient temperature. The sintering temperature varied in steps of 25 °C. During the sintering in flowing argon gas the temperature was kept constant for 3 h. Then, the temperature was reduced to room temperature with the cooling rate of 100 °C/h. After sintering, the Ti sheets were removed from the MgB₂ bulks.

The microstructure of these samples was studied by means of a scanning electron microscopy (SEM) and chemical composition of the matrix was analyzed by energy dispersive X-ray spectroscopy (EDX). The constituent phases of the samples were determined by means of a high-resolution automated X-ray powder diffractometer RINT2200, using Cu K α radiation generated at 40 kV and 40 mA. To correlate reliably the sintering temperature with the trapped field of the MgB₂ bulks, several selected samples were always measured. The trapped magnetic field was studied by magnetizing the bulk sample in a 10 T superconducting magnet in temperatures between 20 K and 40 K.

3. Results and discussion

3.1. X-ray diffraction

The sintering temperature was correlated with the phase of the MgB₂ product by means of a powder X-ray diffraction patterns recorded at room temperature. Fig. 1 shows the selected XRD patterns for MgB₂ material sintered at 700, 775, and 950 °C. In all samples the main phase is a pure MgB₂. Amorphous boron powder is not detected but small content of Mg is clearly seen for the sample sintered at 700 °C, which is similar to the earlier reports [12]. In contrast, almost single MgB₂ phase was observed for the sample sintered at 775 °C. When temperature increased to 950 °C, MgB₄ phase formation was observed (see Fig. 1). X-ray diffraction patterns for all samples and their phase analysis indicated that the

Fig. 1. X-ray diffraction spectra of bulk MgB_2 samples produced by a sintering process in Ar atmosphere: (top) at 950 °C; (middle) at 775 °C; and (bottom) at 700 °C.

samples could be divided into three distinguished groups, according to different phase formation. The groups correspond to low (<750 °C), medium (<825 °C), and high sintering temperatures (>850 °C). From the XRD analysis we found that nearly single phase bulk MgB₂ materials could be obtained at around 775 °C.

3.2. Microstructure analysis

Microstructure control is the most complicated but at the same time the most important task in optimization of materials' processing parameters in general. Fig. 2 shows low resolution SEM images

Fig. 2. Low magnification scanning electron microscope (SEM) images of polished cross-sections of sintered bulk MgB₂ samples synthesized in Ar atmosphere: (top) at 750 °C; (middle) at 850 °C; and (bottom) at 950 °C.

Download English Version:

https://daneshyari.com/en/article/1817827

Download Persian Version:

https://daneshyari.com/article/1817827

Daneshyari.com