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a b s t r a c t

Based on our previously proven theorem that the interaction between a pair of quasiparticles in the nor-
mal Fermi liquid has an opposite sign to the interaction between particles, we consider pair correlation
between a pair of quasiparticles when the interaction between particles is repulsive. For the convenience
of statements, we have presented in this article once again the proof of the theorem in terms of an exact
equation for the thermodynamic potential due to interaction between particles and based on the Green’s
function method. Further, we have derived the Landau expansion of the thermodynamic potentials in
terms of the variation of the quasiparticle distribution function. We have also derived the expansion of
the thermodynamic potential in terms of the variation of an exact single particle (not quasiparticles),
these derivations lead to the relationship between the interaction function for two quasiparticles and
the interaction energy between two particles as shown.

According to the proven theorem the interaction between a pair of quasiparticles is attractive in this
case, the pairing – Cooper’s pairing between a pair of quasiparticles is possible. We solve the Bethe–Sal-
peter type equation for paring of two quasiparticles when both interactions – the Coulomb repulsive and
electron–phonon interaction are present. We show that the electron–phonon interaction, in fact, leads to
the pair breaking effect, in contrast to the common belief that electron–phonon interaction is the main
mechanism for Cooper’s pair formation. We have calculated the transition temperature and the isotope
effect on the transition temperature in terms of the Bethe–Salpeter equation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of high-temperature superconductivity in
cuprates [1–3] and later in fullerides [4], magnesium diborides
[5] and recently in iron-based pnictides [6–8] has been made
numerous attempts to explain superconductivity in terms of the
Coulomb repulsive model. All models of high-temperature super-
conductivity are based on boson-mediated exchange models
involving different bosonic excitations rather than phonons. Thus,
all the models of high-temperature superconductivity are in line
with the original BCS model of superconductivity just replacing
the phonons with some other type of bosonic excitations. Most rec-
ognizable model is the spin wave fluctuation model which has
been applied to cuprates [9] and recently discovered iron-based
pnictides [10]. In the spin-fluctuation model the exchange by spin
fluctuation between a pair of electrons leads to the strong repul-
sive interaction as was first emphasized by Berk and Schrieffer as

a pair breaking mechanism for metals showing strong ferromag-
netic correlation. In the spin-fluctuation model the pairing occurs
as a result of the sign change in the gap function connecting differ-
ent points of the Brillouin zone. The spin-fluctuation model leads
to the d-wave pairing in cuprates [9,11] and s± pairing in iron
based pnictides [12]. All of high-temperature superconductivity
models are in the area of strong electron correlation when weak-
coupling models fail to operate. The area of strong electron corre-
lation usually relies on the Fermi liquid theory where the proper-
ties of Fermi system are described in terms of quasiparticles.
Even exotic models like RVB [13] and anyon models [14] still use
concept of quasiparticles different from Fermi liquid theory. The
Fermi liquid theory concept has been introduced by Landau to
explain unusual properties of liquid 3He in the normal state.

Landau’s theory of Fermi liquids [15–19] is viewed as the most
successful theory of modern physics, a theory whose importance
goes well beyond its phenomenology. The central concepts of the
Fermi liquid theory are the quasiparticle concept and the interac-
tion energy between two quasiparticles. A quasiparticle is defined
as an elementary excitation of a Fermi liquid with Fermi distribu-
tion similar to the spectrum of an ideal Fermi gas, whose effective
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mass is different from the mass of the particles forming Fermi li-
quid, but with the same spin and charge as a regular particle.
The interaction energy between two quasiparticles is defined as
the second order variational derivative of the ground state energy
with respect to the quasiparticles distribution function. From the
fundamental concepts and in terms of Green’s function we have
derived the effective renormalized and fully dressed interaction
between two quasiparticles. We have also derived the relationship
between the interactions of two quasiparticles and two particles,
which is similar to the Ward’s identity in many-particle theory.
We show that the interaction between quasiparticles has opposite
sign to the interaction between particles forming Fermi liquid.
Based on the proven theorem, we consider Cooper’s pairing be-
tween two quasiparticles due to the repulsive (Coulomb) interac-
tion in terms of the Bethe–Salpeter equation. We have also
examined the isotope effect.

2. Derivation of Landau interaction function between
quasiparticles

We consider the thermodynamic potential instead of the
ground state energy. The thermodynamic potential per unit vol-
ume of a system of interacting particles with spin ½ can be written
in terms of an exact single-particle Green function in the well-
known form [19–21]

X ¼ �i
Z

t!þ0

p2

2m
� lþ RrðpÞ

� �
GrðpÞeixt d4p

ð2pÞ4
; ð1Þ

where in deriving Eq. (1) we have used the Dyson equation:
G�1

r ðpÞ ¼ G�1
0r ðpÞ � RrðpÞ, where Rr(p) is the exact single-particle

self-energy part, Gr(p) is the exact single-particle Green’s function
of the system of interacting particles, with G0rðpÞ ¼ G0rðp;xÞ ¼
½x� p2=2mþ lþ idsignx��1 being the free-particle Green function,
l is the chemical potential, while r denotes particle’s spin projec-
tion along the z axis. The integration in Eq. (1) assumes the summa-
tion over spin variable r. We will keep spin indices because the
Landau quasiparticle interaction function depends on the spin vari-
ables. Going to the conventional form for the Green’s function by
splitting the self-energy part into the real and imaginary parts
and introducing the Fermi liquid renormalization factor as

Z�1
r ðp;xÞ ¼ 1� ReRrðp;xÞ � Rrðp;0Þ

x
; ð2Þ

In terms of the quasiparticle distribution function, the single-
particle (quasiparticle) Green’s function can be written in the
well-known form [20,21]

Grðp;xÞ ¼ Zrðp;xÞ
1� nrðpÞ

x� nrðpÞ þ icrðp;xÞ
þ nrðpÞ

x� nrðpÞ � icrðp;xÞ

� �
;

ð3Þ

where nr(p) = Zr(p, 0)(p2/2m � l + Rr(p, 0)) ffi vF(|p| � pF) is the
quasiparticle energy with l ¼ p2

F=2mþ RrðpF ;0Þ being the chemical
potential, which defines the Fermi momentum pFs, and vF = v0F(m/
m⁄) being the quasiparticle Fermi velocity, while v0F = pF/m is the
particle Fermi velocity, where m/m⁄ = Z(p, 0)(1 + a(p)) defines the
quasiparticle mass with a(p) = (R(p, 0) � R(pF, 0))/v0F(|p| � pF)
being the velocity renormalization factor; and cr(p, x) = �Zr(p, x)
ImRr(p, x) is the quasiparticle damping that vanishes on the Fermi
surface (cr(p, 0) = 0); as well as nr(p) is the quasiparticle distribu-
tion function that is assumed to be the usual Fermi distribution
function. Eq. (3) implies that Z(p, x) and a(p) are slowly varying
function of x and p, respectively, across the Fermi surface. Using
Eq. (3) in Eq. (1) and performing integration in Eq. (1) over x, the
fourth component of the four dimensional momentum, Eq. (2) for
the thermodynamic potential takes on the form [21]

X ¼
X
p;r

p2

2m
� lþ Rrðp; nrðpÞÞ

� �
Zrðp; nrðpÞÞnrðpÞ

¼
X
p;r

~nrðpÞnrðpÞ; ð4Þ

where we have introduced ~nrðpÞ, the redefined quasiparticle energy
which, as shown below, is the same as nr(p) used and defined in Eq.
(3), and other quantities are defined as above. It is not surprising
that the thermodynamic potential of the system of interacting fer-
mions is exactly the same as the thermodynamic potential of the
free Fermi gas, but, in fact, Eq. (4) is the thermodynamic potential
of the Fermi gas of interacting quasiparticles – the Fermi liquid.
We can expand the thermodynamic potential Eq. (4) in terms of
the variation of the quasiparticle distribution function dnr(p), fol-
lowing the Landau’s Fermi liquid theory, and equate each term of
the expansion with the corresponding terms in the Landau expan-
sion. Thus, we have [15–18]

X ¼ X0 þ
X
pr

dX
dnrðpÞ

dnrðpÞ

þ 1
2

X
pr;p0r0

d2X
dnrðpÞdnr0 ðp0Þ

dnrðpÞdnr0 ðp0Þ; ð5Þ

where X0 is the thermodynamic potential on the ground state. We
can define that

nð0Þr ðpÞ ¼
dX

dnrðpÞ

¼ Zrðp; nð0Þr ðpÞÞ
p2

2m
� lþ Rrðp; nð0Þr ðpÞÞ þ RHq

r ðp; n
ð0Þ
r ðpÞÞ

� �
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where

RHq
r ðp; n

ð0Þ
r ðpÞÞ ¼

1

Zr p; nð0Þr ðpÞ
� �X

p0r0
frr0 ðp;p0Þnr0 ðp0Þ; ð7Þ

is the Hartree self-energy part for quasiparticles; and frr0 ðp;p0Þ is
defined as the quasiparticle interaction energy given by

frr0 ðp;p0Þ ¼ Zrðp; nrðpÞÞ
dRrðp; nrðpÞÞ

dnr0 ðp0Þ
: ð8Þ

In derivation of Eq. (7) we have used the property of the quasi-
particle interaction function as follows: frr0 ðp;p0Þ ¼ fr0rðp0;pÞ. The
second order variational derivative of X, the thermodynamic po-
tential, with respect to the variational derivative of the quasiparti-
cle distribution function dnr(p), with the use of Eqs. (6)–(8) can be
written as

d2X
dnrðpÞdnr0 ðp0Þ

¼ Zrðp; nrðpÞÞ
Rrðp; nrðpÞÞ

dnr0 ðp0Þ
þ Zrðp; nrðpÞÞ

� RHq
r ðp; nrðpÞÞ
dnr0 ðp0Þ

¼ frr0 ðp;p0Þ þ f H
rr0 ðp;p0Þ; ð9Þ

where frr0 ðp;p0Þ is defined in Eq. (8), and f H
rr0 ðp;p0Þ is the quasipar-

ticle interaction function in the Hartree channel and is defined sim-
ilarly to Eq. (8) for frr0 ðp;p0Þ as follows

f H
rr0 ðp;p0Þ ¼ Zrðp; nrðpÞÞ

dRHq
r ðp; nrðpÞÞ
dnr0 ðp0Þ

; ð10Þ

where RHq
r ðp; nrðpÞÞ is the Hartree self-energy part for quasiparticles

defined in Eq. (7). Eqs. (6)–(8) define the quasiparticle ground state
energy nð0Þr ðpÞ and the interaction energy between two quasiparti-
cles frr0 ðp;p0Þ, respectively. The last term in Eq. (6) in the right hand
side in the square brackets RHq

r p; nð0Þr ðpÞ
� �

is the Hartree term which
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