

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Improved conductivity of infinite-layer LaNiO₂ thin films by metal organic decomposition

Ai Ikeda ^{a,b}, Takaaki Manabe ^c, Michio Naito ^{a,*}

- ^a Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
- ^b Research Fellow of the Japan Society for the Promotion of Science, Japan
- ^c National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

ARTICLE INFO

Article history: Received 26 May 2013 Received in revised form 31 August 2013 Accepted 16 September 2013 Available online 26 September 2013

Keywords: High- T_c superconductivity Parent compounds Infinite-layer structure Nickel oxide

ABSTRACT

Infinite-layer LaNiO₂ thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO₂ is isostructural to SrCuO₂, the parent compound of high- T_c Sr_{0.9}La_{0.1}CuO₂ with T_c = 44 K, and has $3d^9$ configuration, which is very rare in oxides but common to high- T_c copper oxides. The bulk synthesis of LaNiO₂ is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO₂ is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO₂. The resistivity of the best film is as low as 640 μ C cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

More than 25 years have passed since the discovery of high- T_c superconductivity in cuprates. However, this fascinating phenomenon remains confined only to cuprates, and has not spread even to neighboring nickelates. The common features shared by all high- T_c cuprates are: (1) two-dimensional CuO₂ planes in crystal structure and (2) $3d^9$ configuration in electronic structure. The former can be found in other "layered" perovskite oxides whereas the latter is practically nonexistent in ionic solids except for divalent Cu²⁺. Ni¹⁺ compounds might be another possibility, but this valence state of nickel has scarcely been observed in mineral compounds. In 1983, the synthesis of LaNiO₂ with formally monovalent Ni¹⁺ ions was reported by Crespin et al. [1,2]. After the discovery of high- T_c cuprates, LaNiO₂ was revisited because it has not only 3d⁹ configuration but also the so-called infinite-layer structure, isostructural to SrCuO₂, the parent compound of superconducting Sr_{0.9}La_{0.1}CuO₂ with T_c = 44 K. According to the original report by Crespin et al., LaNiO₂ can be synthesized by topotactic reduction of perovskite LaNiO₃ with hydrogen at low temperatures (~300 °C). Topotactic reduction of complex metal oxides allows low temperature transformation to structures in which ordered arrays of anion vacancies can enforce metal coordination environments and oxidation states inaccessible to a conventional high temperature route. The synthesis by Crespin et al., however, required complicated and delicate steps in a hydrogen recirculating system. In fact, several unsuccessful attempts to reproduce the experiments of Crespin et al. have blown some doubt on the existence of the LaNiO₂ phase. Later, in 1999, Hayward et al. succeeded in transforming LaNiO₃ to LaNiO₂ employing NaH [3], one of the most powerful reducing agents known. The use of NaH allows one to isolate the LaNiO₂ phase at lower reduction temperatures (\sim 200 °C) than the use of H₂. Recently we have shown that thin films of LaNiO₃ can be topotactic-transformed to LaNiO₂ by simple hydrogen reduction owing to the large surface-to-volume ratio [4].

In this article, we report the synthesis and characterization of $LaNiO_2$ thin films. We have optimized the synthesis conditions such as substrate choice, firing and reducing conditions. Our refined synthesis conditions produced highly conducting films of $LaNiO_2$.

2. Experimental

Infinite-layer LaNiO $_2$ thin films were prepared by hydrogen reduction of perovskite LaNiO $_3$ thin films. The starting LaNiO $_3$ films were prepared by metal organic decomposition (MOD) using La and Ni 2-ethylhexanoate solutions. The stoichiometric mixture of 2-ethylhexanoate solutions was spin-coated on various substrates listed in Table 1. The lattice constant (a_s) of substrates ranges from 3.68 Å to 3.95 Å. The substrate influences the crystallinity of starting LaNiO $_3$ films and the preferred orientation of resultant LaNiO $_2$. The films were first calcined at 400 °C in air to obtain precursors, and then fired at 850 °C in a tubular furnace under oxygen

^{*} Corresponding author. Tel.: +81 42 388 7229; fax: +81 42 385 6255. E-mail address: minaito@cc.tuat.ac.jp (M. Naito).

Table 1 In-plane lattice constant (a_5) for the substrates used in this work. The in-plane lattice constants (a_0) for LaNiO₃ [5,6] and LaNiO₂ [3] are also included. The a_5 for the substrates with the GdFeO₃ structure is for the pseudo-perovskite (001) face. Rhombohedral LaAlO₃ and LaNiO₃ are also indexed as pseudo-cubic systems.

Substrate	Abbreviation	Structure	a_s or a_0 (Å)
DyScO ₃ (110)	DSO	GdFeO₃	3.944
SrTiO ₃ (001)	STO	perovskite	3.905
NdGaO ₃ (110)	NGO	$GdFeO_3$	3.858
LaAlO ₃ (001)	LAO	rhombohedral	3.790
LaSrAlO ₄ (001)	LSAO	K ₂ NiF ₄	3.756
YAlO ₃ (110)	YAO	$GdFeO_3$	3.715
NdCaAlO ₄ (001)	NCAO	K ₂ NiF ₄	3.688
LaNiO ₃		rhombohedral	3.830
LaNiO ₂		infinite-layer	3.959

 $(p_{02}$ = 1 atm) and furnace-cooled in pure oxygen down to 300 °C for $t_{\rm cool}$ = 1–20 h. Finally the films were given topotactic reduction in pure hydrogen $(p_{\rm H2}$ = 1 atm). The process parameters in reduction are reduction temperatures $(T_{\rm red})$ and reduction time $(t_{\rm red})$. Typically we varied $T_{\rm red}$ from 350 °C to 450 °C and $t_{\rm red}$ from 10 min to 90 min. After reduction, the films were furnace-cooled under hydrogen. The film thickness was typically 800 Å although it may vary film by film to some extent. Films with no reduction are referred to "as-grown" in this article. The crystal structure and lattice parameters of the films were determined by a standard $2\theta/\omega$ X-ray diffractometer (XRD) (Rigaku, Smart Lab). The resistivity and Hall coefficients were measured by the standard four- and six-probe methods.

3. Results and discussion

3.1. Synthesis of LaNiO₃ films on various substrates

Highly crystalline starting LaNiO₃ films are prerequisite to obtain reproducible results in the subsequent hydrogen reduction process. Therefore in this subsection we describe the growth optimization of LaNiO₃ films. We prepared LaNiO₃ films on various substrates listed in Table 1. The XRD patterns showed that all the observed peaks between $2\theta = 5^{\circ}$ and 85° can be indexed as the (001) reflections of the perovskite structure, indicating that single-crystalline films are grown by solid-state epitaxy. Fig. 1(a) shows the XRD patterns around the (002) reflection of films on (110)DyScO₃ (DSO), (001)SrTiO₃ (STO), (110)NdGaO₃ (NGO), and (001)LaAlO₃ (LAO). In this figure, one can see a noticeable change not only in the peak intensity but also in the peak position. Fig. 1(b) is a plot of the (002) peak intensity against the substrate a_s . The peak intensity is stronger for the films on substrates better lattice-matched with LaNiO₃ (3.830 Å) [5,6] and the strongest on NGO (3.858 Å), the best lattice-matched substrate in Table 1. Fig. 1(c) is a plot of the (out-of-plane) lattice constant (c_0) of the film evaluated from the XRD peak positions against the substrate $a_{\rm s}$. The film on LAO has the longest $c_{\rm 0}$ and the film on STO has the shortest c_0 . The substrate dependence of the film's c_0 appears to arise from epitaxial strain and the Poisson effect. The film on LAO has in-plane compressive and concomitant out-of-plane tensile strain whereas the film on STO has in-plane tensile and outof-plane compressive strain.

Fig. 2 is the corresponding resistivity data of the films presented in Fig. 1. Fig. 2(a) shows the temperature dependence of resistiviy $(\rho$ –T), and Fig. 2(b) is a summary of the substrate dependence: ρ (295 K) and the residual resistivity ratio RRR = ρ (295 K)/ ρ (4.2 K) plotted as a function of the substrate a_s . There is a clear correlation between the crystallinity and transport properties, namely films with higher crystallinity have lower ρ (295 K) and higher RRR. The films on lattice matched LAO and NGO have ρ (295 K) \sim 140–

Fig. 1. XRD data for starting LaNiO₃ films on various substrates. (a) XRD patterns around the (002) reflections of LaNiO₃ films on DSO, STO, NGO, and LAO. The (002) peak intensity and c_0 are plotted as a function of a_5 in (b) and (c). In order to see the lattice matching of each substrate with LaNiO₃, the pseudo-cubic lattice constant reported for LaNiO₃ bulk samples is indicated by the broken line in (b) and (c).

180 μΩ cm and RRR > 10. These values are comparable to the best values reported for bulk samples [7]. Both of the XRD and transport data indicate that high-quality epitaxial films of LaNiO $_3$ can be obtained by MOD, using lattice-matched substrates such as LAO, NGO, STO. Therefore subsequent topotactic reduction experiments were performed mainly for films on these substrates.

3.2. Topotactic reduction

Next the experimental results of hydrogen reduction are presented. Fig. 3(a) shows the evolution of the XRD patterns of films on NGO with increasing $T_{\rm red}$ from 370 °C to 450 °C. In this

Download English Version:

https://daneshyari.com/en/article/1817999

Download Persian Version:

https://daneshyari.com/article/1817999

Daneshyari.com