Contents lists available at ScienceDirect # Physica C journal homepage: www.elsevier.com/locate/physc # Improved conductivity of infinite-layer LaNiO₂ thin films by metal organic decomposition Ai Ikeda ^{a,b}, Takaaki Manabe ^c, Michio Naito ^{a,*} - ^a Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan - ^b Research Fellow of the Japan Society for the Promotion of Science, Japan - ^c National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan #### ARTICLE INFO #### Article history: Received 26 May 2013 Received in revised form 31 August 2013 Accepted 16 September 2013 Available online 26 September 2013 Keywords: High- T_c superconductivity Parent compounds Infinite-layer structure Nickel oxide #### ABSTRACT Infinite-layer LaNiO₂ thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO₂ is isostructural to SrCuO₂, the parent compound of high- T_c Sr_{0.9}La_{0.1}CuO₂ with T_c = 44 K, and has $3d^9$ configuration, which is very rare in oxides but common to high- T_c copper oxides. The bulk synthesis of LaNiO₂ is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO₂ is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO₂. The resistivity of the best film is as low as 640 μ C cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures. © 2013 Elsevier B.V. All rights reserved. ## 1. Introduction More than 25 years have passed since the discovery of high- T_c superconductivity in cuprates. However, this fascinating phenomenon remains confined only to cuprates, and has not spread even to neighboring nickelates. The common features shared by all high- T_c cuprates are: (1) two-dimensional CuO₂ planes in crystal structure and (2) $3d^9$ configuration in electronic structure. The former can be found in other "layered" perovskite oxides whereas the latter is practically nonexistent in ionic solids except for divalent Cu²⁺. Ni¹⁺ compounds might be another possibility, but this valence state of nickel has scarcely been observed in mineral compounds. In 1983, the synthesis of LaNiO₂ with formally monovalent Ni¹⁺ ions was reported by Crespin et al. [1,2]. After the discovery of high- T_c cuprates, LaNiO₂ was revisited because it has not only 3d⁹ configuration but also the so-called infinite-layer structure, isostructural to SrCuO₂, the parent compound of superconducting Sr_{0.9}La_{0.1}CuO₂ with T_c = 44 K. According to the original report by Crespin et al., LaNiO₂ can be synthesized by topotactic reduction of perovskite LaNiO₃ with hydrogen at low temperatures (~300 °C). Topotactic reduction of complex metal oxides allows low temperature transformation to structures in which ordered arrays of anion vacancies can enforce metal coordination environments and oxidation states inaccessible to a conventional high temperature route. The synthesis by Crespin et al., however, required complicated and delicate steps in a hydrogen recirculating system. In fact, several unsuccessful attempts to reproduce the experiments of Crespin et al. have blown some doubt on the existence of the LaNiO₂ phase. Later, in 1999, Hayward et al. succeeded in transforming LaNiO₃ to LaNiO₂ employing NaH [3], one of the most powerful reducing agents known. The use of NaH allows one to isolate the LaNiO₂ phase at lower reduction temperatures (\sim 200 °C) than the use of H₂. Recently we have shown that thin films of LaNiO₃ can be topotactic-transformed to LaNiO₂ by simple hydrogen reduction owing to the large surface-to-volume ratio [4]. In this article, we report the synthesis and characterization of $LaNiO_2$ thin films. We have optimized the synthesis conditions such as substrate choice, firing and reducing conditions. Our refined synthesis conditions produced highly conducting films of $LaNiO_2$. # 2. Experimental Infinite-layer LaNiO $_2$ thin films were prepared by hydrogen reduction of perovskite LaNiO $_3$ thin films. The starting LaNiO $_3$ films were prepared by metal organic decomposition (MOD) using La and Ni 2-ethylhexanoate solutions. The stoichiometric mixture of 2-ethylhexanoate solutions was spin-coated on various substrates listed in Table 1. The lattice constant (a_s) of substrates ranges from 3.68 Å to 3.95 Å. The substrate influences the crystallinity of starting LaNiO $_3$ films and the preferred orientation of resultant LaNiO $_2$. The films were first calcined at 400 °C in air to obtain precursors, and then fired at 850 °C in a tubular furnace under oxygen ^{*} Corresponding author. Tel.: +81 42 388 7229; fax: +81 42 385 6255. E-mail address: minaito@cc.tuat.ac.jp (M. Naito). **Table 1** In-plane lattice constant (a_5) for the substrates used in this work. The in-plane lattice constants (a_0) for LaNiO₃ [5,6] and LaNiO₂ [3] are also included. The a_5 for the substrates with the GdFeO₃ structure is for the pseudo-perovskite (001) face. Rhombohedral LaAlO₃ and LaNiO₃ are also indexed as pseudo-cubic systems. | Substrate | Abbreviation | Structure | a_s or a_0 (Å) | |----------------------------|--------------|---------------------------------|--------------------| | DyScO ₃ (110) | DSO | GdFeO₃ | 3.944 | | SrTiO ₃ (001) | STO | perovskite | 3.905 | | NdGaO ₃ (110) | NGO | $GdFeO_3$ | 3.858 | | LaAlO ₃ (001) | LAO | rhombohedral | 3.790 | | LaSrAlO ₄ (001) | LSAO | K ₂ NiF ₄ | 3.756 | | YAlO ₃ (110) | YAO | $GdFeO_3$ | 3.715 | | NdCaAlO ₄ (001) | NCAO | K ₂ NiF ₄ | 3.688 | | LaNiO ₃ | | rhombohedral | 3.830 | | LaNiO ₂ | | infinite-layer | 3.959 | $(p_{02}$ = 1 atm) and furnace-cooled in pure oxygen down to 300 °C for $t_{\rm cool}$ = 1–20 h. Finally the films were given topotactic reduction in pure hydrogen $(p_{\rm H2}$ = 1 atm). The process parameters in reduction are reduction temperatures $(T_{\rm red})$ and reduction time $(t_{\rm red})$. Typically we varied $T_{\rm red}$ from 350 °C to 450 °C and $t_{\rm red}$ from 10 min to 90 min. After reduction, the films were furnace-cooled under hydrogen. The film thickness was typically 800 Å although it may vary film by film to some extent. Films with no reduction are referred to "as-grown" in this article. The crystal structure and lattice parameters of the films were determined by a standard $2\theta/\omega$ X-ray diffractometer (XRD) (Rigaku, Smart Lab). The resistivity and Hall coefficients were measured by the standard four- and six-probe methods. ### 3. Results and discussion # 3.1. Synthesis of LaNiO₃ films on various substrates Highly crystalline starting LaNiO₃ films are prerequisite to obtain reproducible results in the subsequent hydrogen reduction process. Therefore in this subsection we describe the growth optimization of LaNiO₃ films. We prepared LaNiO₃ films on various substrates listed in Table 1. The XRD patterns showed that all the observed peaks between $2\theta = 5^{\circ}$ and 85° can be indexed as the (001) reflections of the perovskite structure, indicating that single-crystalline films are grown by solid-state epitaxy. Fig. 1(a) shows the XRD patterns around the (002) reflection of films on (110)DyScO₃ (DSO), (001)SrTiO₃ (STO), (110)NdGaO₃ (NGO), and (001)LaAlO₃ (LAO). In this figure, one can see a noticeable change not only in the peak intensity but also in the peak position. Fig. 1(b) is a plot of the (002) peak intensity against the substrate a_s . The peak intensity is stronger for the films on substrates better lattice-matched with LaNiO₃ (3.830 Å) [5,6] and the strongest on NGO (3.858 Å), the best lattice-matched substrate in Table 1. Fig. 1(c) is a plot of the (out-of-plane) lattice constant (c_0) of the film evaluated from the XRD peak positions against the substrate $a_{\rm s}$. The film on LAO has the longest $c_{\rm 0}$ and the film on STO has the shortest c_0 . The substrate dependence of the film's c_0 appears to arise from epitaxial strain and the Poisson effect. The film on LAO has in-plane compressive and concomitant out-of-plane tensile strain whereas the film on STO has in-plane tensile and outof-plane compressive strain. Fig. 2 is the corresponding resistivity data of the films presented in Fig. 1. Fig. 2(a) shows the temperature dependence of resistiviy $(\rho$ –T), and Fig. 2(b) is a summary of the substrate dependence: ρ (295 K) and the residual resistivity ratio RRR = ρ (295 K)/ ρ (4.2 K) plotted as a function of the substrate a_s . There is a clear correlation between the crystallinity and transport properties, namely films with higher crystallinity have lower ρ (295 K) and higher RRR. The films on lattice matched LAO and NGO have ρ (295 K) \sim 140– **Fig. 1.** XRD data for starting LaNiO₃ films on various substrates. (a) XRD patterns around the (002) reflections of LaNiO₃ films on DSO, STO, NGO, and LAO. The (002) peak intensity and c_0 are plotted as a function of a_5 in (b) and (c). In order to see the lattice matching of each substrate with LaNiO₃, the pseudo-cubic lattice constant reported for LaNiO₃ bulk samples is indicated by the broken line in (b) and (c). 180 μΩ cm and RRR > 10. These values are comparable to the best values reported for bulk samples [7]. Both of the XRD and transport data indicate that high-quality epitaxial films of LaNiO $_3$ can be obtained by MOD, using lattice-matched substrates such as LAO, NGO, STO. Therefore subsequent topotactic reduction experiments were performed mainly for films on these substrates. # 3.2. Topotactic reduction Next the experimental results of hydrogen reduction are presented. Fig. 3(a) shows the evolution of the XRD patterns of films on NGO with increasing $T_{\rm red}$ from 370 °C to 450 °C. In this # Download English Version: # https://daneshyari.com/en/article/1817999 Download Persian Version: https://daneshyari.com/article/1817999 Daneshyari.com