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a b s t r a c t

Generalization of a disordered metal’s theory has been proposed when scattering of quasiparticles by
impurities is caused with a retarded interaction. It was shown that in this case Anderson’s theorem
was violated in the sense that embedding of the impurities in s-wave superconductor increases its critical
temperature. The increasing depends on parameters of the metal, impurities and their concentration. At a
specific relation between the parameters the critical temperature of the dirty superconductor can essen-
tially exceed critical temperature of pure one up to room temperature. Thus the impurities catalyze
superconductivity in an originally low-temperature superconductor.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Real superconductors are disordered metal containing various
kinds of impurities and lattice defects. Quasiparticles scatter by
these objects that influences upon superconductive properties of
a metal – critical temperature, gap, critical fields and currents
change. It is well known impurities are two kinds – magnetic
and nonmagnetic. The magnetic scattering differently acts on com-
ponents of Cooper pair (for singlet pairing), with the result that its
decay takes place. Superconductive state is unstable regard to
embedding of magnetic impurities - critical temperature decreases
that is accompanied by effect of gapless superconductivity. In a
case of nonmagnetic impurities an ordinary potential scattering
acts on both electrons of a cooper pair equally. Therefore the pair
survives. Hence, superconductive state is stable regard to introduction
of nonmagnetic impurities – a gap and critical temperature of a super-
conductor do not change. This statement is Anderson’s theorem – TC

and D(T) of an isotropic s-wave superconductor do not depend on
presence of nonmagnetic impurities [1–4]. This phenomenon is re-
sult of the gap function D and the energy parameter e being renor-
malized equally [3]. In a case of anisotropic s-pairing a weak
suppression of TC by disorder takes place [5,6]. For d-wave pairing
the nonmagnetic impurities destroy superconductivity like mag-
netic impurities [5–8]. It should be noted that phonons with lower
energies than temperature of the electron gas are perceived by the

electrons as static impurities. Hence the thermal phonons have no
effect on the critical temperature of a s-wave superconductor that
is described by Eliashberg’s equations [32]. However in high-TC

oxides the thermal excitations can break Cooper pairs [33] because
d-wave pairing takes place. Besides a superconductive state is
unstable regard to introduction of nonmagnetic impurities if the
gap is an odd function of k � kF [10]. If pairing of electrons with
nonretarded interaction takes place then TC quickly decreases with
an increase of disorder [11].

The disorder can influence upon phonon and electron specter in
materials. It results to both increase and decrease of TC. Experi-
ments in superconductive metal showed suppression of TC by a
sufficiently strong disorder [12–15]. The strong disorder means
that a free length l is such that 1

kF l � 1 or eFs � 1, where s = l/vF is
a mean free time. For weak superconductors as Al or In a depen-
dence of TC on a disorder 1

kF l has a maximum, but finally the strong
disorder leads to decrease of TC always [25], strong superconduc-
tors (Pb,Hg) have not this maximum [16–18]. In the experiments
a total pattern was found: collapse of superconducting state takes
place near Anderson’s transition metal–insulator, that is when
1

kF l J 1. It should be notice that superconduction appears in amor-
phus films of Bi, Ga, Be (TC � 10 K) just when these materials are
not superconductors in a crystal state [30]. In such systems super-
conducting is result of intensification of electron–phonon interac-
tion by disorder. Nowadays universal mechanisms of influence of a
disorder upon TC are unknown. Several mechanisms of degradation
of TC were supposed: a growth of Coulomb pseudopotential l⁄

[19–21], influence of the disorder upon a density of states on Fermi
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surface m(n) [22,23] – evolution of Altshuler–Aronov singularity
[3,24] into ‘‘Coulomb gap’’. We will not consider these phenome-
nons as violation of Anderson’s theorem because they have other
nature and we will consider a weak disorder 1=l

kF
� 1 that is far from

a metal–insulator transition.
Introduction of nonmagnetic impurities in a superconductor is

widely used in a practice: the impurities essentially increase a crit-
ical current and a critical magnetic field but do not change critical
temperature at the same time. Our problem is to find such impuri-
ties which violates Anderson’s theorem in the direction of essenti-
ality increasing of the critical temperature TC. Obviously it is
matter of nonmagnetic impurities in a three-dimensional super-
conductor with s-wave order parameter D. The impurities have
to play a role of a catalyst of superconductivity in an originally
low-temperature superconductor. It should be notice that in an
article [36] it was shown that in s-wave superconductors small
amounts of nonmagnetic impurities can increase the transition
temperature. However the correction is of the order of TC/EF, and
this effect is result from local variations of the gap function near
impurity sites. Thus the effect is not violation of Anderson’s
theorem.

Nowadays a theory of disordered systems has been well devel-
oped for elastic scattering of conduction electrons by impurities
[3,4,9,24,31]. In a total case the scattering can be inelastic that is
an impurity’s potential depends on time t(t). In this case to develop
a perturbation theory (to unlink and to sum a diagram series) is
impossible. In a Section 2 it will be shown that in a special case
of retarded interaction with impurities the perturbation theory
can be built and a theory of disordered systems can be generalized.
In a Section 3 it will be shown these impurities violates Anderson’s
theorem in the direction of increase of TC. A change of the critical
temperature depends on both impurities’ parameters and elec-
tronic parameters of a metal matrix. At specific combinations of
the parameters the critical temperature can essentially exceed crit-
ical temperature of a pure metal and has values up to room
temperature.

2. Retarded interaction of conduction electrons with impurities

Let us consider an electron moving in a field created by N scat-
terers (impurities) which are placed in a random manner with con-
centration q ¼ N

V. A random distribution of the impurities in a space
corresponds to a distribution function: P(Rj) = V�N. Let a potential
of an impurity is a function of coordinates and time: t(r � Rj, t),
where Rj is an impurity’s coordinate r is an electron’s coordinate.
A total potential created by the impurities is:

Vðr; tÞ ¼
XN

j¼1

tðr� Rj; tÞ ¼
1
V

X
q

X
j

tðq; tÞeiq r�Rjð Þ; ð1Þ

where t(q, t) is Fourier transform of the potential, t(�q, t) = t⁄(q, t).
In most cases the potential can be considered as point, so that
tðqÞ � t ¼

R
tðrÞdr. Thus the system is spatially inhomogeneous

and nonconservative.
Considering the potential as weak a perturbation theory can be

constructed writing the secondary quantized interaction Hamilto-
nian of an electron with the field (1) as Hint ¼

R
drwþðrÞVðr; tÞwðrÞ.

Then a perturbation series for an electron’s propagator has a view:

Gð1;10Þ ¼ G0ð1;10Þ þ
Z

d2G0ð1;2ÞVð2ÞG0ð2;10Þ

þ
Z

d2d3G0ð1;2ÞVð2ÞG0ð2;3ÞVð3ÞG0ð3;10Þ þ . . . ; ð2Þ

where 1 � (r, t), 10 � (r0, t0). The averaging over an ensemble of
samples with all possible positions of impurities recovers spatial

homogeneity of a system. In a representation of secondary quanti-
zation the averaging operation over a disorder has a form [35]:

Gðx; x0Þ ¼ �i
bTwþðxÞwðx0ÞbUD E

0bUD E
0

�! Gðx; x0Þh i

¼ �i
bTwþðxÞwðx0ÞbUD E

0bUD E
0

* +
disorder

; ð3Þ

where bU is an evolution operator, h. . .i0 is done over a ground state
of Fermi system and a lattice (in the numerator and the denomina-
tor separately). The averaging over the disorder is done as follows:
at first the propagator is calculated at the given disorder, and only
then the averaging h. . .i is done (the whole fraction is averaged).
At averaging of the series (2) G(r,r0, t) ? hG(r,r0, t)i in a limit
q ?1, t2 ? 0, qt2 = const the averages appear with factorized
correlators:

Vðr1ÞVðr2Þh i¼qt2dðr1�r2Þ; Vð1Þh i¼0; Vð1ÞVð2ÞVð3Þh i¼0; . . .
Vð1ÞVð2ÞVð3ÞVð4Þh i¼ Vð1ÞVð2Þh i Vð3ÞVð4Þh i
þ Vð1ÞVð4Þh i Vð2ÞVð3Þh iþ . . . ; ð4Þ

that corresponds to motion of an electron in Gauss random field
with a white noise correlator. Then an electron’s propagator is
determined with a sum of diagrams shown in Fig. 1 (a diagram-
matic techniques of averaging over disorder [3]). In an analytic form
we have (we use rules of diagrammatic techniques presented in
[26]):

iGðk;t1;t2Þ¼ iG0ðk;t2� t1Þþ
Z

dt0
Z

dt00iG0ðk;t0 � t1ÞiG0ðk;t2� t00Þ

�q
Z

d3q

ð2pÞ3
ð�iÞtðq;t0ÞiG0ðk�q;t00 � t0Þð�iÞtð�q;t00Þþ . . .

ð5Þ

Here G0(k, t2 � t1) is a free electron’s propagator depending on a time
difference (a pure system is conservative), G is a dressed electron’s
propagator. Since potential of an impurity is a function of a point of
time t = t(q, t), then diagrams of higher orders cannot be uncoupled,
and the series (5) cannot be summed (energy is not conserved). The
series can be summed partially in the following cases only. In the first
case an impurity’s potential does not depend on time t = t(q). It
means that an electron scatters elastically by impurities. It is well de-
scribed by the disordered system theory [3,4,24,31]. Necessary to us
concepts of the theory are presented in Appendix A.

In this article we propose another case when the series (5) can be
uncoupled and summed partially. The case is when an impurity’s po-
tential is a function of a time difference between consecutive scatter-
ings. That is an interaction of electrons with impurities is retarded
(advanced). In the first approximations a dependence of the scattering
potential on a time difference can be considered as harmonic:

tðq; t0Þtð�q; t00Þ ¼ tðqÞtð�qÞe�ix0ðt00�t0 Þ; for t00 > t0

tðqÞtð�qÞeix0ðt00�t0Þ; for t00 < t0

( )
; ð6Þ

Fig. 1. The diagram expansion of an averaged Green function G(k, t) in a random
field (4). Dotted lines with daggers means action of the averaged summarized field
of impurities in a momentum space – a transfer of an intermediate momentum q.
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