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a b s t r a c t

We calculated the self-energy corrections beyond the mean-field solution of the rotating antiferromagnet-
ism theory using the functional integral approach. The frequency dependence of the scattering rate 1=s is
evaluated for different temperatures and doping levels, and is compared with other approaches. The
general trends we found are fairly consistent with the nearly antiferromagnetic Fermi liquid as far as
the k-anisotropy and some aspects of the marginal-Fermi liquid behavior are concerned. The present
approach provides the justification from the microscopic point of view for the phenomenology of the mar-
ginal Fermi liquid ansatz, which was used in the calculation of several physical properties of the high-TC

cuprates within the rotating antiferromagnetism theory. In addition, the expression of self-energy we cal-
culated takes into account the two currently hot issues of the high-TC cuprate superconductors, namely the
Fermi surface reconstruction and the hidden symmetry, which are closely related to the pseudogap.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The origin of the pseudogap (PG) [1] behavior of the high-TC cup-
rate superconductors (HTSC) remains an issue despite more than
one quarter of a century has passed after the discovery of supercon-
ductivity in these materials [2]. The PG phase turned out to be more
challenging and subtle than the superconducting phase itself.
Indeed, the PG has been measured as a depression in the density
of states at the Fermi energy below the doping dependent PG tem-
perature T�, but no broken symmetry has so far been observed
beyond any doubt [3]. A number of theoretical models have been
proposed in order to explain this PG phenomenon, with some based
on the preformed-pairs scenario and others based on competing
orders [4]. The rotating antiferromagnetism theory (RAFT), which
belongs in the latter, is characterized by two competing orders;
namely the d-wave superconductivity and the rotating antiferro-
magnetic (RAF) order. The RAF order parameter has a finite magni-
tude below a temperature, which was identified with T�, and a
phase that varies with time [5–10]. RAFT yield results in good
agreement with several experimental data of the HTSCs. Resistivity
[11], optical conductivity [12], Raman [13], and ARPES [14,9] have
been analyzed within RAFT assuming the phenomenological

marginal-Fermi liquid (MFL) self-energy [15]. Until before the
completion of this work, the justification for using this assumption
was missing. The present work shows that a self energy that is con-
sistent with a MFL is derived beyond the mean-field point of RAFT.
This self-energy is due only to the longitudinal fluctuations of the
order parameter.

In the limit of the tight-binding bare electrons our self-energy
satisfies the same equation as in the second-order Born approxima-
tion, which was used in the nearly antiferromagnetic Fermi liquid
(NAFL) theory [16,17]. Moreover, we generalize this approximation
into a gapped second-order Born approximation that takes into
consideration the PG explicitly. Interestingly, we can qualify the
RAF state as a state that is nearly antiferromagnetic because the
RAF state has the same (free) energy as that of a true ordered anti-
ferromagnetic state but is a disordered state because of the time
dependence of the phase of the RAF order parameter. The self-
energy calculation results from only the longitudinal fluctuations
of the RAF order parameter, in agreement with the assumption
made in NAFL. RAFT is also consistent with the assumption made
in NAFL concerning the existence of a gap-like behavior without a
condensate. In RAFT, a gap exists in the electronic energy spectrum
but long-range order does not occur.

Below the PG temperature in the underdoped regime, we find
that the relaxation rate displays a linear behavior at large frequen-
cies consistent with a MFL, but it displays strong deviation from
linearity at low frequencies, which is characterized by a hump
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due to the PG. In the overdoped regime at any temperature or
above the PG temperature in the underdoped regime, the relaxa-
tion rate shows a mixture of Fermi liquid (FL) and MFL behaviors.
We argue that this evolution with doping is related to the Fermi
surface (FS) reconstruction [9].

This work is organized as follows. In Section 2 we calculate the
Gaussian corrections to the mean-field solution of RAFT using a
Hubbard–Stratanovich identity that decouples the quartic term of
the Hubbard model in the channel of RAF order. This yields the
propagator of the Gaussian fluctuations. Self-energy is calculated
in Section 3 using this propagator, and a gapped second-order Born
approximation is derived for self-energy in the presence of the PG.
Some numerical results are presented in Section 4, and conclusions
are drawn in Section 5.

2. Method

RAFT has been developed using the extended Hubbard model,
with a repulsive on-site Coulomb interaction and a nearest-neigh-
bor attractive interaction that simulates d-wave pairing. Here, we
focus on the normal (non superconducting) state, where the Ham-
iltonian on a two-dimensional lattice reads as

H ¼ H0 þ HI

¼ �t
X
hi;ji;r

cyi;rcj;r � t0
X
hhi;jii;r

cyi;rcj;r � l
X
i;r

cyi;rcj;r þ U
X

i

ni;"ni;#: ð1Þ

In (1), H0 stands for the kinetic and chemical potential energies, and
HI ¼ U

P
ini"ni# is the sum of all on-site Coulomb energies. t and t0

designate the electron’s hopping energies between the nearest-
neighbor ðhi; jiÞ and next-nearest-neighbor ðhhi; jiiÞ sites respec-
tively, l is the chemical potential, cyi;r (cj;r) creates (annihilates)
an electron with spin r at site i, and ni;r ¼ cyi;rci;r is the number
operator.

The partition function can be written as [18]
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where c and c� are from now on anticommuting Grassmann vari-
ables. For the RAF order, we decouple the interacting U-term of
(1) using a Hubbard–Stratanovich transformation by considering
the RAF order parameter Q ¼ hci;rcyi;�ri, which has been used to
model the PG behavior [5,6]. This gives
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where bi is a Hubbard–Stratanovich complex field. In order to
recover the RAF state at the mean-field level in the present treat-
ment we write the field bi as

bi ¼ jbijei½pðxiþyiÞþ/ðtÞ�: ð4Þ

The phase term eipðxiþyiÞ ¼ ð�1Þxiþyi guarantees that the rotating
order parameter is staggered due to the antiferromagnetic correla-
tions, and the time-dependent phase /ðtÞ insures that the staggered
magnetization rotates [10,12,6,7]. Using the Grassmann variables
and the transformation (3), the partition function takes on the form

Z ¼
Z Y
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Here b ¼ 1
kBT is inverse temperature, and A and B designate the two

sublattices of the bipartite lattice. The upper index a in Ha
0 means

that the single particle part of the Hamiltonian has now to be writ-
ten using the two sublattices, A and B. The mean-field solution,
where bi � b0 is time and space independent, allows us to recover
the RAFT’s mean field equation for the parameter Q ¼ hci;"c

y
i;#i, Ref.

[5]:

1 ¼ U
2N

X
k

nF ½E�ðkÞ� � nF ½EþðkÞ�
EqðkÞ

; ð7Þ

where nFðEÞ ¼ 1
1þebE ; EqðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ðkÞ2 þ b2

0

q
, and N is the total num-

ber of lattice sites. The mean field energies

E� ¼ �l0ðkÞ � EqðkÞ; ð8Þ

become the same as those derived earlier in Ref. [5] when we let
b0 ¼ UQ ; Q being then the RAF order parameter satisfying Eq. (7).
Here, �1ðkÞ ¼ �2tðcos kx þ cos kyÞ and l0ðkÞ ¼ �l� 4t0 cos kx cos
ky þ Un. n ¼ hciri is the electron’s density, which satisfies the
following mean-field equation [5]

n ¼ 1
2N

X
k

nF ½EþðkÞ� þ nF ½E�ðkÞ�: ð9Þ

Note that the decoupling of the quartic interacting term of the Hub-
bard Hamiltonian using this density order parameter led to adding
Un in the expression of l0ðkÞ [5]. The fluctuations beyond the mean-
field solution are considered for the RAF order only for simplicity.
Also, the fluctuations considered here are in the longitudinal direc-
tion of the RAF parameter, since we argue that these are much more
important than the transverse fluctuations, given that the phase of
the local RAF parameter is time dependent, so already fluctuating at
the mean-field level. The only possible transverse fluctuations are
not local but due to the fluctuations in the phase difference between
adjacent sites. These are not considered here.

Upon Fourier transforming to k and frequency space, the mean-
field action takes on the form

S0 ¼
X

~k

w�~kG
�1w~k þ N

jb0j2

U
; ð10Þ

where ~k � ðk;xnÞ; k being the wavevector and xn the fermionic
Matsubara frequency. Here, w�~k ¼ ðc

A�
~k" cB�

~k" cA�
~k# cB�

~k#Þ is a 4-component

spinor, and the mean-field Green’s function is [11]

Gðk; ixnÞ ¼
½ixn þ l0ðkÞ�I þ �ðkÞMþ bN
½ixn þ l0ðkÞ�2 � ½�2ðkÞ þ b2

0�
; ð11Þ

with

M¼
s1 0
0 s1

� �
; N ¼

0 s3

s3 0

� �
; ð12Þ

where s1 and s3 are the first and third Pauli matrices.
In order to go beyond the mean-field solution, we consider the

Gaussian fluctuations by writing

bi ¼ b0 þ dbðri; sÞ; ð13Þ

with dbðri; sÞ a small deviation around the mean-field point. Using
the approach for calculating Gaussian contributions to the partition
function described in Ref. [18] one finds
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