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a b s t r a c t

Using the nonlinear Ginzburg–Landau equations we study the vortex configurations in a superconducting
square with a central square pillar in the presence of a uniform applied magnetic field. The presence of
the pillar changes the vortex structure in the superconducting sample considerably. We calculate mag-
netization, magnetic induction, supercurrent and vorticity, which show different vortex configurations
as a function of magnetic field.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Usually the antipinning/pinning centers, the geometry/size of
the sample and the energy surface barrier are considered to be com-
peting effects that alternatively control the magnetic response in
the vortex state. The superconducting properties of samples with
engineered manufactured barriers/pillars have attracted over the
past decade [1,2]. Motivated by technological advances,
superconductors with different types of defects revealed a
diversity of new phenomena. The possibility of controlling the vor-
tex dynamics and the critical fields has made from mesoscopics
superconductors one of the favorite experimental and theoretical
systems for studies of the physics of condensed matter [3–7]. It
was observed that due to the influence of vortex shell structures
in thin Nb samples, a transition from Abrikosov-like vortex lattice
to vortex shell structures take place at interstitial sites. Also, when
the pillars are placed closer, the vortex patterns depend on their
density and the pillar size [2]. In previous works we studied the
effects associated to the pinning force of both a point-like and
circular defect on the vortex configuration, thermodynamical
properties and the vortex entry and expulsion fields in a very thin
disk. We found that due to vortex-defect attraction (repulsion),
the vortices always (never) are found to be sitting on the defect
position. In addition, for the circular defect, we found a vortex–anti-
vortex state at zero magnetic field [8] and non-conventional vortex
configurations [9]. Now, in continuation of previous work of vortex-

defect interaction, we have gone further by calculating the magne-
tization, free energy, vorticity and Cooper pair density for a square
sample of area S ¼ 144n2, with a central square pillar of cross sec-
tion area T2, for T=n ¼ 2;4;6;8, where n is the coherence length.

2. Theoretical formalism

The general form of the time dependent Ginzburg–Landau
equations are [10–12]:
@w
@t
¼ � �i$� Að Þ2wþ wð1� jwj2Þ; ð1Þ

@A
@t
¼ Re �w �i$� Að Þw

� �
� j2$�r� A: ð2Þ

In Eqs. (1) and (2) dimensionless units were introduced as follows:
w is the order parameter in units of w1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
, where a and b are

two phenomenological constants; lengths in units of the coherence
length n; time in units of t0 ¼ p�h=8KBTc; A in units of Hc2n, where
Hc2 is the second (upper) critical field for bulk superconductors.
For a very thin film of variable thickness, Eq. (1) can be rewritten
as [13,14]:

@w
@t
¼ �1

g
�i$� Að Þ � g �i$� Að Þwþ wð1� jwj2Þ; ð3Þ

@A
@t
¼ Re �w �i$� Að Þw

� �
� j2$�r� A; ð4Þ

where now all the quantities depend only on the coordinates ðx; yÞ
and g ¼ gðx; yÞ is just a function which describes the thickness of the
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sample [15]. We consider gðx; yÞ ¼ 1 everywhere, except at the pil-
lar position in the sample, where gðx; yÞ is slightly larger than one.
The passage from Eqs. (1) and (2) to (3) and (4) requires an average
of the original equations along the z direction by considering a film
of thickness c� n. We simulate a mesoscopic superconducting
sample of area S2 ¼ 144n2 with a central pillar of area T2, for
T=n ¼ 2; 4; 6; 8. The height of the pillar and square are a ¼ 0:5n.
In Fig. 1 we illustrate the schematic view of square superconductor
with a pillar on the top of it.

3. Results and discussion

Fig. 2 shows the magnetization 4pM (up) and vorticity N
(down) as functions of the applied magnetic field, both on the left

column, when He is increasing, and decreasing (right column) for
T=nð0Þ ¼ 2; 4; 6; 8. As can be seen from the panels of Fig. 2, the
upper and lower critical fields H2 and H1 are approximately inde-
pendent of the size of small defects in the sample; we have
H1 ¼ 0:620 for T=n ¼ 2; 4; 6, but H1 ¼ 0:682 for T=n ¼ 8. In other
words, both the filed barrier for the first penetration and the
applied field sufficient to destroy superconductivity do not alter
significantly with variation of the pillar size. Furthermore, it is
clearly seen that, for all cases the upper thermodynamical critical
field H2 occurs at the same value H2 ¼ 1:8.

Another interesting characteristic in the downward branch of
the magnetic field, is that the vortex expulsion fields are different
as T=n varies. The final vortex transitions when the magnetic field
is decreasing occur at different values of Hp when the magnetic
field is decreasing: N ¼ 4! 0 occurs at Hp ¼ 0:460 for
T ¼ 8n; Hp ¼ 0:340 for T ¼ 6n, at Hp ¼ 0:139 for d ¼ 4n and finally
a vortex transition N ¼ 2! 0 occurs at Hp ¼ 0:072 for T ¼ 2n. This
is consistent with the fact that the more efficient the pillar acts as
an anti-pinning as we have argued above. In Fig. 3 we plot the
Cooper pairs density jwj2 (a), the current density
Js ¼ Re �w �i$� Að Þw

� �
(b), the order parameter phase D/ (c), and

the magnetic induction h (d), for He ¼ 0:724 in the increasing
branch of the magnetic field and several values of T=n in the upper
panel of the figure, and decreasing branch of the applied filed in the
lower panel of the same figure. We can observe in the order param-
eter density plot that for d ¼ 2nð0Þ, there are N ¼ 4 vortices into
the sample, one in each corner of the pillar and no vortices in the
pillar. For larger values of T, the same four vortices nucleate on
the square, but they are placed on opposite sides of the pillar. It

Fig. 1. Illustration of a square superconductor with a pillar on the top.

Fig. 2. Magnetization 4pM (up) and vorticity N (down) as functions of the applied magnetic field when it is increasing (left) and decreasing (right) for several values of T=n.
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