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a b s t r a c t

We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vor-
tex core shrinkage (Kramer–Pesch effect) in a single-band s-wave superconductor. The Born limit and the
unitary limit scattering are compared within the framework of the quasiclassical theory of superconduc-
tivity. We find that the impurity effect inside a vortex core in the unitary limit is weaker than in the Born
one when a system is in the moderately clean regime, which results in a stronger core shrinkage in the
unitary limit than in the Born one.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The radius of a vortex core in type-II superconductors is one of
the fundamental physical quantities which characterize a property
of superconductivity. The temperature and magnetic field depen-
dence of the core radius has been investigated theoretically and
experimentally [1–19]. The low-temperature vortex core shrink-
age, called the Kramer–Pesch (KP) effect [1], was theoretically
investigated under the influence of non-magnetic impurities in
the Born limit previously [2]. Impurity effects are characterized
by the scattering phase shift related to the impurity potential
strength [20–23]. The Born limit corresponds to the limit of weak
impurity potential and correspondingly small phase shift. The
opposite limit is called the unitary limit, where the impurity po-
tential is infinitely strong and the phase shift is p/2. The difference
between these limits plays an important role in, for example,
unconventional superconductors [20–22].

In this paper, we theoretically study the KP effect both in the
Born and the unitary limit in an s-wave superconductor, and com-
pare their results. It is found that the temperature dependence of
the core shrinkage is stronger in the unitary limit than in the Born
one, in the moderately clean regime where the mean free path is of
the order of or larger than the coherence length. Such a difference

of the core shrinkage can be investigated experimentally by, e.g.,
muon spin rotation [3,5,6], scanning tunneling microscopy [24],
resistivity [4], and specific heat [11,25] if there is a suitable super-
conducting material in which different types and densities of
impurities can be doped.

2. Formulation

We consider a single vortex in a single-band s-wave supercon-
ductor. The system is assumed to be an isotropic two-dimensional
conduction layer perpendicular to the vorticity along the z-axis. In
a circular coordinate system within the layer, the real-space posi-
tion is r = (rcos /, rsin /). The unit vector �k represents the sense of
the wave number on a Fermi surface assumed to be circular. The
Fermi velocity is vF ¼ vF

�k. The pair potential around the vortex
is D(r) = D(r, /) = jD(r)jexp(i/). We will consider the temperature
T dependence of the length n1 that characterizes the vortex core ra-
dius [1–3],

1
n1
¼ 1

Dðr !1Þ limr!0

DðrÞ
r

: ð1Þ

This quantity is depicted in Fig. 1. Note that n1 is related to the
pair potential slope at the vortex center and scales with the dis-
tance at which the vortex current reaches its maximum value
[1,3,6,11], while jD(r)j is restored at a distance of the order of the
coherence length (�n1 in the clean limit) even at low temperatures
[11,26].
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To obtain n1(T), the vortex core structure is calculated by means
of the quasiclassical theory of superconductivity as in Ref. [2]. The
Eilenberger equation is numerically solved to obtain the quasiclas-
sical Green’s function ĝðixn; r; �kÞ. The effect of impurities distrib-
uted randomly in the system is taken into account through the
impurity self energy bRðixn; r; �kÞ. The quasiclassical Green’s func-
tion, the impurity self energy, and the Eilenberger equation to be
solved are, respectively, given as [2,27–31]

ĝ ¼ �ip
g if

�if y �g

� �
; bR ¼ Rd R12

R21 �Rd

� �
; ð2Þ

ivF � $ĝ þ ½i ~xnŝ3 � beD ; ĝ� ¼ 0: ð3Þ

The equation is supplemented by the normalization condition
ĝ2 ¼ �p2ŝ0 [29,32]. Here, ŝ3 is the z component of the Pauli matrix,
ŝ0 is the unit matrix, and the brackets denote the commutator
½bA; bB� ¼ bAbB � bBbA. The Eilenberger equation contains the renormal-
ized Matsubara frequency (pair potential) ~xn ðbeDÞ defined by

i ~xn ¼ ixn � Rd; ð4Þ

beD ¼ 0 eD
�eD� 0

 !
¼

0 Dþ R12

�ðD� � R21Þ 0

� �
: ð5Þ

We consider an isolated single vortex in an extreme type-II
superconductor (Ginzburg–Landau parameter j� 1), and there-
fore the vector potential is neglected in Eq. (3). Throughout the pa-
per, we use units in which ⁄ = kB = 1.

The Eilenberger equation (3) can be solved by the Riccati
parametrization [33–35]. The quasiclassical Green’s function is ex-
pressed as

ĝ ¼ �ip sgnðxnÞ
1þ ab

1� ab i2a

�i2b �ð1� abÞ

� �
: ð6Þ

Here, sgn(xn) is the signum (or sign) function. The two quantities
aðixn; r; �kÞ and bðixn; r; �kÞ are independently determined by solving
the Riccati equations,

vF � $aþ ð2 ~xn þ eD�aÞa� eD ¼ 0; ð7Þ
vF � $b� ð2 ~xn þ eDbÞbþ eD� ¼ 0: ð8Þ

These differential equations are solved along a straight line par-
allel to vF [33,36,37] by using the bulk solutions as initial values
[33,38],

a�1 ¼
� ~xn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

n þ jeDj2q
eD� ðxn > 0Þ; ð9Þ

bþ1 ¼
� ~xn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

n þ jeDj2q
eD ðxn > 0Þ; ð10Þ

and

aþ1 ¼
�1
bþ1

¼
� ~xn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

n þ jeDj2q
eD� ðxn < 0Þ; ð11Þ

b�1 ¼
�1
a�1

¼
� ~xn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

n þ jeDj2q
eD ðxn < 0Þ: ð12Þ

A stable numerical solution for a (b) is obtained by solving the
Riccati equation in forward (backward) direction along the straight
line for xn > 0 [33,39]. By contrast, the equation for a (b) is solved
in backward (forward) direction for xn < 0.

Considering an s-wave non-magnetic impurity scattering and
the t-matrix, bR is given by [2,27,40]

bRðixn; rÞ ¼
Cn

1� ðsin2 d0Þð1� CÞ
�ihgi hf i
�hf yi ihgi

� �
; ð13Þ

where C = hgi2 + hfihf� i with h � � � i being the average over the Fermi
surface with respect to �k. The impurity scattering rate in the normal
state is Cn, which is related to the mean free path l = vF/2Cn. The
scattering phase shift is d0. We set d0 = 0 in the Born limit (keeping
Cn finite) and d0 = p/2 in the unitary limit.

The self-consistency equation for D, called the gap equation, is
given as

DðrÞ ¼ kpT
P

�xc<xn<xc

hf ðixn; r; �kÞi; ð14Þ

where xc is the cutoff energy and the coupling constant k is given
by

1
k
¼ ln

T
Tc

� �
þ

P
06n<ðxc=pT�1Þ=2

2
2nþ 1

: ð15Þ

Here, Tc is the superconducting critical temperature. We set
xc = 10D0 with D0 being the BCS pair-potential amplitude at zero
temperature.

The Eilenberger (Riccati) equation, the impurity self energy, and
the gap equation are numerically solved self-consistently. The used
boundary conditions for the pair potential and impurity self energy
far from the vortex are the same as those discussed in Ref. [2]. See
the Appendix A for more details on the calculation procedure. In
the next section, we will show results obtained from self-consis-
tent solutions. We define the zero-temperature coherence length
n0 = vF/D0.
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Fig. 1. Schematic figure of the pair potential as a function of the distance from the
vortex center. It depicts the length n1 that characterizes the vortex core radius [see
Eq. (1)].
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Fig. 2. Spatial profiles of the pair potential amplitude jD(r)j around the vortex
under the influence of impurity scattering in the unitary limit. The horizontal axis r
is the distance from the vortex center. The scattering rate is Cn/D0 = 0.1 (solid lines)
and Cn/D0 = 1 (dashed lines). For each scattering rate, the temperature is T/
Tc = 0.1 � 0.7 from top to bottom by 0.2 step.
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