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a b s t r a c t

We propose a nonequilibrium mechanism of the gap function enhancement in nanoscale superconduc-
tors. The mechanism is based on coherent control and localization of the spatial distribution of Bogo-
liubov quasiparticles on the scale much less than the wavelength of the control field.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A superconducting transition is characterized by the gap in the
excitation spectrum and the critical transition temperature Tc ,
which both depend on the effective phonon mediated attraction
between electrons and the density of states in the system near
the Fermi level. The search for new materials with an enhanced
phonon interaction mechanism or a higher density of states to pro-
vide a higher Tc is regarded as the ‘‘Holy Grail’’ of modern con-
densed matter physics [1]. Here we propose mechanism of a
nonequilibrium enhancement of the local gap value, which is not
based on direct control of the effective interaction between elec-
trons, but rather relays on control of the local density of states
through the spatial localization of the quasiparticle density in the
system. The local gap function Dðr; tÞ at any given position r and
time moment t depends on the product of the local amplitudes
of quasi-electron and quasi-hole (Bogoliubov) excitationsP

iv�i ðr; tÞuiðr; tÞ [2]. If the external control field is chosen in such
way that it drives a significant amount of the quasiparticles to be
localized at a certain time moment t0 in the vicinity of r0, this
can lead to an enhancement of the local gap value Dðr0; t0Þ. There-
fore, the gap function can be enhanced locally in the target volume
rather than in the whole system, and this enhancement is achieved
along with the decreasing of the quasiparticles density and the

local gap function elsewhere, as it shown in Fig. 1. Similar ideas
motivated the studies on spatial localization of atomic and molec-
ular wavepackets on the scale much less than wavelength of the
external control field [3]. In the present work we consider coherent
control of quasiparticle subbands, which leads to spatial localiza-
tion of quasiparticles and the local gap enhancement. The local
gap value is approximately proportional to the locally defined
critical transition temperature Tcðx0; t0Þ / Dðx0; t0Þ.

The suggested coherent control mechanism should be con-
trasted with the known Eliashberg mechanism of the transition
temperature enhancement in superconductors [4]. In the latter
case a time-dependent electromagnetic field creates a nonequilib-
rium distribution of quasiparticles in the superconductor that may
lead to unoccupied states at the Fermi surface at the gap edge,
leading to an increase of the gap. However, the Eliashberg mecha-
nism does not result in a spatially localized enhancement of the
quasiparticle density. The Eliashberg mechanism is a relatively
weak effect, resulting in increase of the transition temperature Tc

by an order of 1%. This mechanism was observed and extensively
studied in the cases of electromagnetic, acoustic or tunneling
nonequilibrium processes [5].

2. Setup of the control problem

To illustrate the proposed enhancement mechanism let us con-
sider the interaction of a thin film nanoscale superconductor with a
time dependent control field. A nonequilibrium state of the system
is described using time-dependent Bogoliubov-de Gennes (TDBdG)
equations for inhomogeneous systems [2]:
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i�h
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@t
¼ Hunðr; tÞ þ Dðr; tÞvnðr; tÞ; ð1Þ

i�h
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@t
¼ �Hvnðr; tÞ þ D�ðr; tÞunðr; tÞ;

with H ¼ H0 þ UHðr; tÞ þ Vextðr; tÞ � l;H0 defined by

H0 ¼ �
�h2

2m
r2 þWtrapðrÞ: ð2Þ

Here m is the electron mass, l is the chemical potential, WtrapðrÞ is
the effective trapping potential, Vextðr; tÞ is the external control
potential. UHðr; tÞ is the Hartree-like mean field local potential,
given by

UHðr; tÞ ¼ �D0

X
n

½junðr; tÞj2fn þ jvnðr; tÞj2ð1� fnÞ�; ð3Þ

where fn is the quasiparticle occupation number determined by the
Fermi distribution function. The quantity of our interest, time
dependent local gap function Dðr; tÞ, which is also called the pairing
potential, is given by

Dðr; tÞ ¼ D0

X
n

unðr; tÞv�nðr; tÞð1� 2f nÞ: ð4Þ

Here D0 is the effective electron attraction coefficient. The summa-
tion in Eq. (4) is performed over the eigenstates with the single elec-
tron energies within the Debye window around the Fermi level,
½EF �xD; EF þxD, where xD is the cutoff (Debye) energy.

Let us consider a system with the nanoribbon geometry shown
in Fig. 1, and set the trapping potential WtrapðxÞ to be a square well
of the length L with infinite walls. The external control field
Eðx; tÞ ¼ �rVextðx; tÞ is assumed to be linearly polarized along the
x direction, perpendicular to the nanoribbon. In the limit of the
control field wavelength much bigger than the system’s size, the
control field EðtÞ has a constant amplitude, and the control poten-
tial is a linear function of the coordinate: Vextðx; tÞ ¼ �EðtÞx.

Low dimensional systems similar to the shown in Fig. 1 can be
realized, for example, using modern graphene-based materials.
Recently lithium deposition was suggested to achieve supercon-
ductivity in graphene [6]. About at the same time an efficient
chemical method was developed to produce graphene nanoribbons
with the width, which can be varied in a wide range, as small as
10 nm [7]. The thickness of the superconducting system should
not be too small to prevent the phase slip phenomena [8], which
is not included in our mean field description. One may also con-
sider an experiment with quasi one dimensional superconductors,
such as a nanowire or a bundle of doped carbon nanotubes [9,10].
Making analogy with the Eliashberg effect [11], one may expect

that a nonequilibrium perturbation of the system may increase
the effective critical temperature, as well as the instantaneous
gap function.

For the setup shown in Fig. 1 the quasiparticle amplitudes can
be represented as vnðr; tÞ ¼ vnðx; tÞe�ikzz sinðpy=dÞ;unðr; tÞ ¼
vnðx; tÞe�ikzz sinðpy=dÞ, where the index n counts the quasiparticle
band, and the thickness of the nanoribbon d is small enough so
one can neglect the excitations in this dimension. The TDBdG equa-
tions Eq. (1) become:

i�h
@unðx; tÞ

@t
¼ H1Dunðx; tÞ þ Dðx; tÞvnðx; tÞ; ð5Þ

i�h
@vnðx; tÞ

@t
¼ �H1Dvnðx; tÞ þ D�ðx; tÞunðx; tÞ;

where

H1D ¼ �
d2

dx2 þ
�h2k2

z

2m
þ

�h2p2

2md2 þ UHðx; tÞ � lþ Vextðx; tÞ: ð6Þ

At zero temperature T ¼ 0 the gap function becomes

Dðx; tÞ ¼ D0

X
n

unðx; tÞv�nðx; tÞ; ð7Þ

and the Hartree-like mean field local potential takes form of

UHðx; tÞ ¼ �D0

X
n

jvnðx; tÞj2: ð8Þ

3. Optimal control of the gap function

Optimal control problem can be formulated as a search for an
optimal external field Vextðx; tÞ, which maximizes the average value
of the gap function hDi in the target region ½x0 � �0; x0 þ �0� over a
given time interval ½Tf � t0; Tf �:

hDi ¼ ð2t0�0Þ�1
Z Tf

Tf�t0

Z x0þ�0

x0��0

jDðx; tÞj dx dt: ð9Þ

In order to understand how is it possible to control the quantity Eq.
(9), we do the following perturbative analysis. The TDBdG equations
Eq. (5) can be approximately solved in the absence of the control
field (Vðx; tÞ � 0), assuming constant gap function DðxÞ ¼ D0 and
Hartree potential UHðxÞ ¼ U0. The analytical solution in this case is

unðx; tÞ � �unwnðxÞe�iEnt
�h ;vnðx; tÞ � �vnwnðxÞe�iEnt

�h ; ð10Þ

with �u2
n ¼ 1

2 1þ �n�~l
En

� �
, �v2

n ¼ 1
2 1� �n�~l

En

� �
, where ~l ¼ l� �h2k2

z
2m �

�h2p2

2md2�

U0. The eigenenergies are En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�n � ~lÞ2 þ D2

0

q
, where �n and wnðxÞ

are the eigenenergies and eigenfunctions for the stationary Schroe-
dinger equation with the Hamiltonian Eq. (6). In the considered
geometry the system consists of several subbands of quasiparticle
amplitudes. For the chosen geometry the unperturbed wavefunc-
tions are close to the analytical solution for noninteracting electrons
in the infinite well potential: wnðxÞ ¼ 1ffiffi

L
p sinðpnx=LÞ. A control field

that maximizes hDi should drive at least one subband amplitude
un;vn from its initial state unðx; 0Þ;vnðx;0Þ to a spatially localized
nonequilibrium state at the target time unðx; Tf Þ;vnðx; Tf Þ (assuming
t0 � Tf ), which will have an enhanced magnitude at the target
region ½x0 � �0; x0 þ �0�. The region of the enhanced gap function is
shown by the dashed line in Fig. 1.

Similar optimal control problem was solved analytically in the
case of optimal squeezing of a wavepacket of an atom in an infinite
well potential using multifrequency control field [12]. As an initial
guess for the control field Vextðx; tÞ we choose one that drives the
initial quasiparticle subband amplitude with the lowest energy
E1;u1ðx;0Þ;v1ðx;0Þ to a nonequilibrium spatially localized state.
There is some freedom of choice of the target localized state.

Fig. 1. Optimal control of a nanoscale superconducting nanoribbon using external
field Eðx; tÞ. Note the local enhancement of the gap function in the center of the
nanoribbon, at the expenses of the gap function decrease near the edges.
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