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a b s t r a c t

In this paper by means of the plane wave expansion method, we have calculated the photonic band struc-
ture of 2D photonic crystals consisting of high temperature superconducting hollow cylinders arranged in
a square lattice. Band structures were obtained at low frequencies and assuming TM polarization of the
incident wave, for different inner radii of the cylinders and for two different temperatures (5 K and 15 K),
showing the tunability of photonic band gaps with respect to these parameters. Interesting features, such
as the decreasing of cutoff frequency and separation of photonic modes were observed by increasing both
the temperature and inner radius. Permittivity contrast and the difference between the inner and outer
radius lead to the appearance of new band gaps when compared with the case of solid cylinders. These
band gaps can be modulated by the width of the shell and temperature, which may be used for the
development of novel optical devices.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the publication of the works of Yablonovich [1] and John
[2], photonic crystals (PCs) have been issue of investigation due to
the tunability and mold of light passing through them. PCs are
structures with periodicity in the permittivity and/or magnetic
permeability of the materials of which they are composed. An
important feature of PCs, is the inhibition of light propagation at
some frequency ranges known as photonic band gaps (PBGs).
Due to this, the application of PCs in optical devices, solar cells,
LEDs and PC optical fibers have been considered [3–5].

PCs with different dielectric materials have been studied, where
the dielectric permittivities are assumed constants. However, the
possibility of using materials with dispersive dielectric permittivi-
ties has been achieved. In fact, many theoretical and experimental
works on PCs made of metallic and high-temperature superconduc-
ting (HTSC) constituents, have been published [6–25]. Unlike con-
ventional PCs, the PCs based on metallic and superconducting
materials exhibit dispersive electromagnetic responses and high
variability of PBG, besides operating in the terahertz frequency
range. Particularly, works about PCs with HTSC constituents
[13–24] has been proposed, due to the control of the PBG varying
external parameters such as the system temperature and applied
magnetic fields. Taking into account the negligible losses by

dissipation below the critical temperature, the electromagnetic
response of these materials, can be obtained assuming a non mag-
netic material (l ¼ 1) and considering a frequency-dependent
dielectric permittivity (�ðxÞ), which is well represented in the con-
text of the two-fluid model [15], where the dielectric permittivity
can be reduced to that given by the Drude model for lossless metallic
materials.

On the other hand, shells or hollow rods have been introduced
in PCs, with the aim to obtain efficient tunable band gaps [26–30]
by using different geometries of both the PC lattice and the hollow
rods. In this kind of PC, the dielectric permittivity and the filling
factor play an important role in the variation of the PBS, showing
several differences with respect to PC with solid rods. One of them
is the formation of new photonic modes and band gaps.

In this paper, we extend the idea of superconducting photonic
crystals (SPCs), by considering cylindrical shell rods in two-dimen-
sional square lattices. In order to obtain the photonic band struc-
ture (PBS), we use the plane wave expansion (PWE) method [31].
The shell rods, made of a high-temperature cuprate superconduc-
tor, are characterized by having inner and outer radii R1 and R2,
respectively. Additionally, we assume TM polarization for the inci-
dent waves, in which the electric field is parallel to the anisotropy
axis (c axis) of the superconducting material. The c axis is perpen-
dicular to the CuO2 planes (ab planes).

This work is organized as follows: the theoretical procedure to
obtain the dielectric function is presented in Section 2, results
and discussions of the photonic band structures are presented in
Section 3, and conclusions in Section 4.
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2. Theoretical framework

We assume the electric field of the electromagnetic radiation
parallel to the z axis (Ezjjc). Besides, the shell rods with a dielectric
permittivity �3ðxÞ, have an internal region characterized by a
dielectric permittivity �2 and are embedded periodically in a
background of air with permittivity �1. The unit cell and the three
mentioned regions in the photonic crystal are shown in Fig. 1.

The dielectric permittivity along the c axis in cuprate supercon-
ductors can be obtained by using the two-fluid model, in which a
fraction ns of total electron density n is in the superconducting
phase, and another one nn is in the normal state, such that
n ¼ ns þ nn is conserved. In this model, the effective dielectric
function is given by [15]

�eff ðxÞ ¼ �1 1�
x2

sp

x2 �
x2

np

xðxþ icÞ

 !
; ð1Þ

where

xsp ¼
c

k
ffiffiffiffiffiffi
�1
p and xnp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nne2

m�0�1

s
; ð2Þ

are the plasma frequencies of superconducting and normal elec-
trons along the c axis, respectively. �1 is the dielectric permittivity
at high frequencies of the superconducting material, c is the light
speed, m the electron mass, c a damping constant and k is the
London penetration depth, which in cuprate superconductors is
related with the temperature by means of

kðTÞ ¼ k0ffiffiffiffiffiffiffiffiffiffiffiffi
1� T

Tc

q ; ð3Þ

where k0 is the penetration depth at zero temperature and Tc is the
critical temperature of the superconducting material. Therefore, we
can rewrite the superconducting plasma frequency as

xspðTÞ ¼ xsp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T

Tc

s
: ð4Þ

where xsp0
is the superconducting plasma frequency at zero tem-

perature. We must note that Eq. (1) is valid for frequencies x below
the superconducting gap 2D, because at frequencies of the incident
wave above that gap, the superconducting state can disappear. At
sufficiently low temperatures, the dissipation effects associated
with electrons in the normal state can be neglected, since at this
temperature range it is satisfied the condition that ns ! n, and the
contribution to the dielectric permittivity of the electrons in the
normal state vanishes. In that case, the dielectric permittivity takes
the form

�eff ðxÞ ¼ �1 1�
x2

sp

x2

 !
; ð5Þ

which has the same structure as that of the lossless metallic mate-
rials in the Drude model. In order to obtain the photonic modes of
two-dimensional SPC composed by cylindrical shell rods, we must
solve the wave equation for the electric field, which is given by

r�r� E ¼ x2

c2 �ðrÞE; ð6Þ

where �ð~r;xÞ is the dielectric permittivity of the superconducting
photonic crystal in the xy plane, which involves both background
and superconductor permittivities. By using the plane wave expan-
sion (PWE) method for dispersive materials [33], we solve Eq. (6) as
a eigenvalue problem, where x2=c2 are the eigenvalues required for
the photonic band structure. In order to solve Eq. (6) by means of
the PWE method, we use the dielectric permittivity in the PC as
�ðx; yÞ ¼ �ðxþ Rx; yþ RyÞ, where Rx and Ry are the lattice vectors.
Therefore, we expand the dielectric permittivity in a Fourier series
on the reciprocal lattice vectors Gx and Gy as

�ðrÞ ¼
X

G

vðGÞeiG�r; ð7Þ

where

vðGÞ ¼ 1
X

Z
cell
��1ðr;xÞe�iG�rdr; ð8Þ

and X being the area of the unit cell. Here we have used ~G ¼ ðGx;GyÞ
and ~r ¼ ðx; yÞ in our calculations. To calculate the Fourier coeffi-
cients for the dielectric permittivity in Eq. (7), we define the dielec-
tric function of the system introducing the step function according
with Fig. 1, we have

SrodðrÞ ¼
1; 0 < r < R1;

0; otherwise;

�
ð9Þ

and

SshellðrÞ ¼
1; R1 < r < R2;

0; otherwise:

�
ð10Þ

In this way, the dielectric function for the square lattice is written as

1
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By replacing Eq. (11) into Eq. (8), the Fourier coefficients for square
lattice take the form
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>>>>>>:
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where J1ðxÞ is the Bessel function of the first kind, f 1 and f 2 are the
filling fractions corresponding to solid and shell rods, respectively.
Obviously, the filling fraction depends of lattice geometry. In fact,
the filling fraction is the ratio between the occupied area by rods
and the unit cell area. By using a similar procedure, the plasma fre-
quency function can be obtained [33].

The periodic nature of the dielectric permittivity, allows us to
expand the electric field in Fourier series as follows

Ezðr;xÞ ¼
X

G

EzðGÞeiG�r: ð13Þ

By inserting Eqs. (7) and (13) into Eq. (6), we obtain the matrix
related to the frequencies eigenvalue problem. Therefore, by solv-
ing the eigenvalue problem, we obtain the photonic band structure
for SPC. In our case, we will show the PBS at the first Brillouin zone
in the direction which connects high symmetry points.Fig. 1. Graphical representation for unit cell in the photonic crystal.
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