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a b s t r a c t

The magnetoelastic problem for a superconducting cylinder with a concentric hole placed in a magnetic
field is investigated, where the flux creep and viscous flux flow have been considered. The stress distri-
butions are derived and numerical calculated for the descending field in both the zero-field cooling (ZFC)
and field cooling (FC) processes. The effects of applied magnetic field, flux creep and viscous flux flow on
the maximal radial and hoop stresses are discussed in detail, and some novel phenomena are found.
Among others, for the FC case, the maximal hoop tensile stress always occurs at the hole edge, whist
for the ZFC case, the maximal stresses including both hoop and radial stresses either occur in the vicinity
of the hole or occur at the position of flux frontier in the remagnetization process. For the descending
field, in general, both the flux creep and viscosity parameters have important effects on the maximal
radial and hoop stresses. All these phenomena are perhaps of vital importance for the application of
superconductors.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, high-temperature superconductors (HTSs) have
been developed for many applications [1–5]. Because flux-pinning-
induced tensile stress exists in HTSs, the corresponding magneto-
elastic problems of superconducting slabs, circular cylinders and/
or circular disks have received considerable attention [6–15]. How-
ever, the critical state models adopted in those works only describe
quasistatic flux distributions.

On the other hand, although either the thermally activated flux
creep flow [16–18] or viscous flux [19–21] in superconductors has
been, separately, considered, the reports on the effects of them to-
gether on the mechanical behaviors are very limited. To the best of
our knowledge, only recently, Xue et al. [22] investigated the ef-
fects of both flux creep and viscous flux flow on the internal tensile
stress and magnetostriction of a type-II superconducting slab. In
addition, as well known, holes, as one kind of defects, have great
effects on the stress distributions of superconductors [23,24], and
tensile stress (which tends to generate cracks or expand already
existing micro-cracks in the superconductors) always occurs in
the process of field descent. Thus, based on the previous works
[22,23], in this paper, we further investigate the magnetoelastic
problem of an isotropic hollow superconducting cylinder subjected

to the applied descending magnetic field, where the flux creep and
viscosity of superconducting cylinder exists simultaneously. Gen-
eral expressions for stresses in terms of the flux density distribu-
tion are given firstly. The stress distributions are further derived
for the descending field in both the zero-field cooling (ZFC) and
field cooling (FC) activation processes. Numerous results are plot-
ted and discussed in detail. The study should have help for the
application of superconducting materials.

2. Basic equation

Consider a type-II superconducting cylinder of radius R with a
concentric hole of radius a. The cylinder is placed in a time-depen-
dent magnetic field Ba pointing to the z direction and assumed to
be isotropic (see Fig. 1).

As known, some critical state models have been used to analyze
the flux distribution in a superconductor. However, in a magnetiza-
tion process, the flux velocity will increase with the magnetic field
sweep rate [25], and the thermal activated flux creep will cause the
critical state to relax away from its marginal stability because vor-
tices in the superconductor usually jump out of their pinning cen-
ters [26]. In order to simultaneously take into account of the effects
of flux creep and viscous flux flow on the superconductors in the
process of field descent, the magnetic flux distribution in the con-
sidered hollow superconducting cylinder for the descending filed
can be expressed as follows [22,25,26]:

http://dx.doi.org/10.1016/j.physc.2014.02.013
0921-4534/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 31187936543.
E-mail address: wjfeng9999@126.com (W.J. Feng).

Physica C 500 (2014) 14–19

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier .com/locate /physc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.physc.2014.02.013&domain=pdf
http://dx.doi.org/10.1016/j.physc.2014.02.013
mailto:wjfeng9999@126.com
http://dx.doi.org/10.1016/j.physc.2014.02.013
http://www.sciencedirect.com/science/journal/09214534
http://www.elsevier.com/locate/physc


1
l0

@B
@r
¼ Jc

j _Baj
l0 Jct0

 !1=ðnþ1Þ

þ g
/0

t; ð1Þ

where B is the total magnetic field in the cylinder, _Ba is the applied
magnetic field sweep rate, Jc is the critical current density and
equals a constant in the Bean model, g is the viscosity associated
with flux motion, t is the local flux flow velocity, /0 is the flux quan-
tum, t0 is a constant relevant to flux creep velocity, n is a constant
relevant to creep activation barrier, temperature and the Boltzmann
constant, and l0 is the material constant as well. By the way, Eq. (1)
implies that the slope of the flux distribution will increase with the
velocity of flux flow, that the flux creep is linear, and that the creep
activation barrier grows logarithmically with the decreasing current
[22]. In addition, in Eq. (1), the demagnetization effect is simulta-
neously neglected because of the superconducting cylinder being
infinitely long in the z direction.

According to the Maxwell equation, it is easily obtained
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By integrating, one gets
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Additionally, similar to the works before [19,22,25], by assum-
ing that t = t1 is a constant, we can further obtain from Eqs. (2)
and (1) that @Bðr;tÞ

@t ¼ �2t1
@Bðr;tÞ
@r , which means B(r, t) = B(r � 2t1t)

holds true. However, it should be pointed out that in the following
section, for simplicity, although B(r, t) = B(r � 2t1t) is used, strictly
speaking, the relation does not satisfy Eq. (3). In fact,
B(r, t) = B(r � 2t1t) essentially assumes that the flux density line-
arly relies on both r and t, which can be easily seen latter (See
Eqs. (12) and (21)).

The stress components including radial stress rr and hoop
stress rh in an infinitely long hollow cylinder placed in a parallel
magnetic field have been investigated by Johansen el al. [23].
And they are, respectively,
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where Bh is the magnetic field at the position r = a, E and m are the
Young’s modulus and Poisson’s ratio of the superconducting cylin-
der, respectively.

3. Stress distributions

3.1. ZFC

For the ZFC process, it is assumed that the applied field is re-
duced from its maximal value Bm = 4Bp (Bp = l0 JcR is an introduced
characteristic field corresponding to the full penetration field of a
solid cylinder without the defect in the Bean model) to Ba. Here
there are two situations decided by Ba should be considered. (i)
The negative and positive currents are existent simultaneously in
the superconducting cylinder with a concentric hole. (ii) The cur-
rents are all positive in the superconducting cylinder. Set B� be
the parameter field when the currents change from (i) to (ii). The
dimensionless b� is defined and easily obtained as

b� ¼ B�

Bp
¼ bm � ð1� �aÞðvþ 1Þ; ð6Þ

where the dimensionless quantities v, bm, and �a are, respectively,
defined as
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bm ¼ Bm=Bp; �a ¼ a=R ð8Þ

with _ba ¼ _Ba=Bp.
After further introducing the following dimensionless

quantities

b ¼ B=Bp; ba ¼ Ba=Bp; bh ¼ Bh=Bp; ð9Þ

q ¼ r=R; q0 ¼ r0=R; ð10Þ

substituting B(r, t) = B(r � 2t1t) into Eq. (1), and using boundary
condition

bð1; tÞ ¼ baðtÞ; bað0Þ ¼ bm; ð11Þ

the flux densities for the two cases can be, respectively, written as
follows:

Case (i): b� < baðtÞ 6 bm

bðq; tÞ ¼
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where
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R
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q0 ¼ 1� ðbm � baðtÞÞ=ðvþ 1Þ; ð14Þ

Case (ii): 0 6 baðtÞ 6 b�

bðq; tÞ ¼ baðtÞ þ vð1� qÞ; �a 6 q 6 1: ð15Þ

Substituting Eqs. (12) and (15) into Eqs. (4) and (5), we can ob-
tain the stress distributions easily. For example, as b� 6 ba 6 bm,

Fig. 1. A superconducting cylinder with a concentric hole placed in a parallel field
Ba along the z-direction.
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