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a b s t r a c t

The stripe states discussed in the variational Monte Carlo simulations are reviewed. The interplay
between stripes and dx2�y2 -wave superconductivity in the two-dimensional t–t0–J model is emphasized.
The next-nearest-neighbor hopping t0 < 0 stabilizes the stripe states around the hole doping rate, d = 1/
8. It is found that the stripes and spatially oscillating superconductivity coexist depending on parameters.
The superconductivity order parameter is enhanced at the hole stripe regions, and its sign becomes oppo-
site on the adjacent hole stripes (i.e., antiphase). It is also found that the energy differences between
homogeneous states and the stripe states with and without superconductivity are relatively small. We
consider the possibility that the antiphase coexistence may explain the weakness of the c-axis Josephson
couplings in some of the high-Tc cuprates.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

As extensively discussed in this special volume, the stripe state
is one of the interesting states realized in high-Tc cuprate super-
conductors [1–3]. The stripe state consists of one-dimensional
charge modulation (hole stripe) and antiphase antiferromagnetic
domains. Theoretically it is quite interesting to study whether such
an inhomogeneous state can be realized in some strongly corre-
lated electron systems. In this article we focus on the theoretical
calculations based on variational Monte Carlo simulation which
enables us to study possible inhomogeneous states with coexisting
charge-order, antiferromagnetic-order and superconductivity. We
also discuss the important effects of the next-nearest-neighbor
hopping (t0-term). Although the lattice degrees of freedom may
contribute to the stability of stripe states [1–3], in this review we
focus on the stability of stripe states purely from the electronic
origin.

Since high-Tc cuprates belong to the strongly correlated regime
[4–6], conventional theoretical approaches such as perturbation,
mean-field theories, and random phase approximation are not jus-
tified. Thus some numerical techniques should be used in order to
study models with strong correlation. Among various numerical
methods, density-matrix renormalization group calculations will
be intensively described in the article by White and Scalapino in
this volume [3]. Thus in this article we describe the results
obtained in the variational Monte Carlo simulations. As another
numerical method, exact diagonalization of small clusters has also
been often used. However, this method is not appropriate for the

study of stripe states, since the small clusters with up to 20 lattice
sites are not large enough for studying long-range structures like
stripes.

In Section 2, we first describe the t–J model (and its generaliza-
tion) which is the canonical model for high-Tc cuprate
superconductors [4–6]. We review the uniform states realized in
the t–J model and explain its phase diagram. Then in Section 3,
we discuss the coexistence of antiferromagnetism and supercon-
ductivity near half-filling. Since one of the important features of
the stripe state is its antiferromagnetic domain structure, the rela-
tion between antiferromagnetism and superconductivity has to be
understood even in the uniform state. In Section 4, we summarize
the results for the stripe state obtained in the variational Monte
Carlo method. Section 5 is devoted to the summary and discus-
sions. Our present conclusion is that the stripe state can be realized
in the t–t0–J model in particular for the case with t0 < 0 [7]. Here t0

represents the hopping integral between the next-nearest-
neighbor Cu sites on a square lattice. The important point which
we can extract from the existing numerical results is that the stripe
state and other uniform states have very similar variational
energies to each other. Therefore, the stripe state will be easily sta-
bilized when some small perturbations, such as lattice structure
deformation or local impurity potentials, give some favorable situ-
ation for the stripe states. (See for example, Adachi and Koike in
this volume [3]). Another interesting feature of the stripe obtained
in the variational Monte Carlo is that it can coexist with supercon-
ductivity. In such cases, superconducting order parameter has a
spatial oscillation in accordance with the period of the underlying
stripe structure. It is found that even the sign of the dx2�y2 -wave or-
der parameter changes as a function of the position, which lead to
unique properties [7].
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2. t–J model and its uniform states

The t–J model is the canonical model for high-Tc cuprate super-
conductors which represents the ‘‘doped Mott insulator’’ [4].
Firstly, in the mother compound, e.g., La2CuO4, or without doping
of carriers, the cuprate systems are Mott insulators. This is appar-
ent from the resistivity measurements, i.e., the resistivity shows an
insulating behavior above the Neel temperature, TN. This means
that the antiferromagnetic transition at TN is not a spin-density-
wave (SDW) phase transition but a magnetic phase transition of
the localized spins inside the Mott insulator. (If this phase transi-
tion is an SDW transition, the system should behave as an Fermi
liquid above TN, and the resistivity should be metallic.)

Starting from this fact of the Mott insulator, it is natural to con-
sider the t–J model on a two-dimensional square lattice [6]

H ¼ �
X
ði;jÞr

PG tijc
y
ircjr þ h:c:

� �
PG þ J

X
hi;ji

Si � Sj; ð1Þ

where the summation over (i, j) in the first term represents the
summation over the bonds connected by hopping integrals, tij. In
the so-called t–t0–J model, we have the nearest-neighbor hopping,
t, and the next-nearest-neighbor hopping, t0. PG represents the Gut-
zwiller projection operator [8] defined as PG ¼

Q
ið1� ni"ni#Þ, which

vanishes when there is at least one doubly occupied site, i.e., PG ex-
cludes the double occupancy from the Hilbert space. The strong
electron correlation prohibits the double occupancy. The second
term in Eq. (1) represents the superexchange interaction between
the localized spins on the Cu sites, and the summation over hi, ji
represents the summation over the nearest-neighbor bonds. Typical
parameters in the t–t0–J model are t = 0.4 eV, t0/t � �0.1 for LSCO
and t0/t � �0.3 for YBCO and BSCCO, and J = 0.13 eV (J/t = 0.3)
[9–12], which are obtained so as to reproduce the Fermi surface
observed experimentally in ARPES [13,14] or in the band calcula-
tions [15].

It is apparent that, without doping (d = 0) or at half-filling, this
model reduces to the two-dimensional Heisenberg model which
describes the Mott insulator in the mother compounds. The effect
of the doped holes just appears as the correlated hopping terms
without disturbing the superexchange interactions away from
the doped holes. Actually Zhang and Rice [16] showed in the early
stage of the high-Tc research that the doped holes form so-called
Zhang-Rice singlets by using a model with oxygen orbitals on
which the doped holes are mainly located [17–19]. The Zhang–Rice
singlet is a singlet pair formed between a localized spin on one of
the Cu sites and a doped-hole on the neighboring oxygen sites. The
stabilization energy is so large (about 5 eV [6]) that we can under-
stand that every doped-hole definitely forms a Zhang–Rice singlet.
This singlet behaves as a hole in the t–J model, and the Cu site is
singly occupied unless a Zhang–Rice singlet is located. This fact is
essential for high-Tc cuprates which are doped Mott insulator.

The most important and nontrivial effects in the Hamiltonian
(1) is that the double-occupancy is strictly forbidden in the Hilbert
space by the Gutzwiller projection, PG. Due to this constraint, the
theoretical tool for investigating this model is restricted. As we
described in Section 1, the numerical methods which can be ap-
plied to the t–J model are exact diagonalization, density-matrix
renormalization group and variational Monte Carlo simulations.

For the t–J model, it has been established that its ground-state
will be a dx2�y2 -wave superconductivity near half-filling and for
J/t = 0.3–0.4 (see Fig. 1) [20–24]. This situation is very different
from that in the weak-coupling Hubbard model. In the variational
point of view, we use the Anderson’s Gutzwiller-projected BCS
function for the t–t0–J model [4],

jWi ¼ PGjBCSi; ð2Þ

where the projection operator PG excludes the double occupancy in
the wave function jBCSi. jBCSi is a BCS mean-field wave function
with dx2�y2 -wave superconducting order parameter.

jBCSi ¼
Y

k

uk þ vkcyk;"c
y
�k;#

h i
j0i; ð3Þ

with

uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
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Ek

� �s
; vk ¼

Dk

jDkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ jDkj2
q

, and Dk = D(coskx � cosky) for the dx2�y2 -wave
superconductivity. Here D is one of the variational parameters
and nk can be chosen as the original dispersion relation,

nk ¼ �2tðcos kx þ cos kyÞ � 4t0 cos kx cos ky � l: ð5Þ

However, it is natural to choose t0 and l as variational parameters,
t0var and lvar, which are to be optimized so as to minimize the vari-
ational energy. The variational parameter t0var controls the shape of
the Fermi surface [25]. t is chosen as a unit of energy and we need
not to treat t as a variational parameter. Actually, the wave function
(2), when normalized, depends only on D/t, t0var=t, and lvar/t. It can
be easily shown that at d = 0 the variational state (2) is equivalent to
the resonating-valence-bond (RVB) state proposed by Anderson for
frustrated spin systems [26] due to the Gutzwiller projection
PG [4,6].

In the variational Monte Carlo simulation, we calculate the var-
iational energy

Evar ¼
hWjHjWi
hWjWi ; ð6Þ

by using a Monte Carlo updates of the real-space electron configura-
tions. Since there is no sign problem, the variational energy can be
evaluated quite accurately. By optimizing the variational parame-
ters, we obtain a phase diagram as shown in Fig. 1 where the coexis-
tence of the antiferromagnetism and superconductivity discussed in
the following section [27,28] is also included. As shown in Fig. 1,
when we fix J/t = 0.3, the dx2�y2 -wave superconductivity is stabilized
for d < 0.4. The doping dependence of the variational parameter, D/t,
is shown in Fig. 2 for J/t = 0.3. D decreases monotonically with
increasing d. The phase boundary of the dx2�y2 -wave superconductiv-
ity is determined by the doping rate at which D vanishes. For d < 0.1,
a coexistent state between antiferromagnetism and dx2�y2 -wave
superconductivity is realized, This state is discussed in the following
section. Furthermore, for the small values of J/t (J/t < 0.1) in Fig. 1,
Nagaoka’s ferromagnetic state [29,30] is found, which is consistent
with the high-temperature expansion study [31].

δ

J / t

d-wave

ferro-
magnetism
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Fig. 1. Phase diagram obtained in the variational Monte Carlo simulations for the
ground state of the two-dimensional t–J model as a function of J/t and d. (From Ref.
[23,28]).
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