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Iron-based superconductors on the domain wall.

We investigate multi-component superconductors, in relation to iron pnictides, by using the Ginzburg-
Landau theory. We show that a three-band superconductor exhibits several significant properties that are
not found in single-band or two-band superconductors. The frustrating pairing interaction among Fermi
surfaces may lead to a time-reversal symmetry broken pairing state. In fact, we have a solution with
time-reversal symmetry breaking, that is, a chiral solution when there is such a frustration. The Ginz-
burg-Landau equation for three-component superconductors leads to a double sine-Gordon equation.
A kink solution exists to this equation that results in the existence of fractional-quantum flux vortices
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1. Introduction

Since the discovery of oxypnictides LaFeAsO;_xF, [1], BaFe,As;
[2], LiFeAs [3,4] and Fey.,Se [5,6], the Fe pnictides high-tempera-
ture superconductors have attracted extensive attention. There
are numerous experimental studies regarding the electronic states
of the new family of iron-based superconductor [7-12]. The un-
doped samples exhibit the antiferromagnetic transition [9,10],
and show the superconducting transition with electron doping
[1]. The band structure calculations indicate that the Fermi sur-
faces are composed of two hole-like cylinders around I, a three-
dimensional Fermi surface, and two electron-like cylinders around
M for LaFeAsO [13]. This family of iron pnictides is characterized by
multi Fermi surfaces.

The objective of this paper is to show novel properties of multi-
component superconductors on the basis of Ginzburg-Landau the-
ory. An importance of multi-band structure is obviously exhibited
in recent measurements of the Fe isotope effect [14,15]. The in-
verse isotope effect in (Ba,K)Fe,As;, can be understood by the mul-
ti-band model with competing inter-band interactions [16]. The
two-gap theory of superconductivity has a long history, which is
the generalization of the BCS theory to the case with two conduc-
tion bands [17,18]. We show that an extension to a three-band
model provides us remarkable new properties.
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2. Hamiltonian and Ginzburg-Landau functional

Let us consider the multi-band BCS model

H- Z /dn/ﬁk Wig () Zg,] /drt// it (M, (N (1)

(1)

where i andj (=1, 2, ...) are band indices. Ki(r) stands for the kinetic
operator and we assume that g; = g;;. The second term is the pairing
interaction and g are coupling constants. The mean-field Hamilto-
nian is

H= Z/dr{zw*K Wrig (1) + Ai(T)i; (N (1)

A?(r)t/fu(r)tﬁn(f)} )
where the gap function is
= = > gyl (M (1) 3)
)
We define the Green’s function,

Fioo(X = X) = (Taihjo (X), (X)) (4)

joo
T, is the time ordering operator and we use the notation x = (t,
r). The gap functions satisfy

Zgu (@ =140 ZguﬁZ $ ogr,r) (5)
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This yields the gap equation,
1 E
4 = ngijN,-Aj / dgfj tanh <ﬁ> (6)

where E; = (g'jz +14;*)"/* and T is the temperature. We set the Boltz-
mann constant kg to unity and N; is the density of states at the Fermi
surface. At the critical temperature T = T, this equation reads

2%,
4i=1In ( T f) zj:gﬁNjAj (7)

Here o, is the cutoff energy and yy; is the Euler constant. We assume
the same cutoff energy w. in all channels of attractive interactions.
Following the method by Gor’kov [19], we obtain a set of differen-
tial equations
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Here, e is the charge of the electron and v, is the electron velocity at
the Fermi surface in the Ith band. From this set of equations, the
Ginzburg-Landau free energy for three-gap superconductors is

written as
/dr{zajw +22/3,|(//j\ +ZK (VH—)%
+8—H2 (P1a¥i¥z + Vaa¥30) = (Pas¥iaths + 13ad3)
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p; are constants and ¢y is the flux quantum,

he _ he
e~ 2l

bo = (10)
The coefficients of bilinear terms are expressed in terms of the

matrix G = (gj) as

2e’w, 1
_[ij( e ) e )].,} (11)
7 =—(G) (12)
where G~ is the inverse of the matrix G.

3. Chiral ground states

The order parameter is written as
Vi = pe” (13)
where p; = [{/;|. The importance of phase dynamics has been pointed
out previously [20-26]. We assume that the coefficients of the

Josephson terms are real: y; = 75 = ;- Then the free energy density
is
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1
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We focus on the role of phases of the order parameters and de-
fine new phase variables

Pr=01—02, @;=0,—0s3, ¢p3=03—-0, (15)

We examine the ground state of the system with the potential

= =271, P, €05(01 — 02) — 27,30, 05 COS(0, — 03)
= 2)31 P3P, €OS(03 — 61)
=TI'1 €08 ¢, + I'; C0S ¢, + I'3 COS 4 (16)

We assume that the absolute values |I";| are equal in magnitude.
When all the I'; are negative, we have the minimum at
®1= @2 = @3 =0. If we change the sign of I';, this produces a frus—
tration effect and the ground state is at (n/3, /3, 27t/3). ¢; (i =
3) take fractional values. When all the I'; are positive, we have a
minimum at (@1, @2, ¢@3)=(2n/3, 27/3, 27/3), as shown in Fig. 1.
In these two cases, the order parameters are complex and thus
the time-reversal symmetry is broken [25,26]. In this time-reversal
symmetry broken state, the two eigenvalues of the gap equation in
Eq. (7) are degenerate so that we have complex eigenvectors with
SU(2) symmetry [27]. We can generalize the condition, that |I";] are
equal, to obtain general time-reversal symmetry broken states
[28].

4. Double since-Gordon equation and kinks

Here we consider the case 1, = 7,3 and find a solution satisfying
®1=¢@2=@. In this case we obtain the double sine-Gordon
equation,

KV?p — 7y, sin @ — 75, sin(2¢) =0 (17)

We investigate the energy functional

E:/ BKO(Z—f)Z+V(¢)}dx (18)

where Ko = 2Kp? and the potential V is
u
V(p) =V, (cos ¢+ cos(2<p)) (19)

We defined Vo = —y120% and u = y31/912.

First consider the case Vy > 0. In the case u > 1/2, we have a chi-
ral state at ¢ = ¢o = arccos(—1/(2u)) and a kink solution that trav-
els from one minimum to the other minimum. The stationary
condition with respect to ¢ leads to the double sine-Gordon
equation,

0

Fig. 1. Contour map of V for I'y = I'; = I'3 > 0. Black and white dots indicate minima
of the potential V. Dotted line is the path in the valley connecting two minima.
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