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a b s t r a c t

The mechanism of nonmagnetic Mott transitions in the Hubbard model on the square lattice is studied,
using a variational Monte Carlo method. A simple doublon (D)–holon (H) binding mechanism a previous
study proposed [J. Phys. Soc. Jpn. 75 (2006) 114706] has to be modified, because even a wave function
with completely bound D–H pairs brings about a Mott transition at a finite correlation strength. By intro-
ducing two characteristic lengths, D–H pair binding length, nDH, and minimum inter-doublon distance,
nDD, we can properly describe the physics of Mott transitions, and determine the critical point by
nDD � nDH. This concept seems universal, because it is valid not only for newly introduced wave functions
with long-range D–H and D–D (H–H) correlation factors discussed here, but for a wide range of wave
functions with D–H binding factors.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In connection with the cuprate superconductors, which are
known as so-called doped Mott insulators [1,2], it is vital to under-
stand the mechanism of Mott transitions. In this work, through a
variational Monte Carlo (VMC) approach, we address this phenom-
enon in the single-band Hubbard model on the square lattice:

H ¼ �t
X
hi;jir
ðcyircjr þ h:c:Þ þ U

X
j

njnj; ð1Þ

where the notation is standard (t;U P 0). Although it is certain for
fermions that metal–insulator transitions occur at U/t = 0 in this
model on hypercubic lattices, the transitions are of magnetic origin
owing to the good nesting conditions [3]. This point is corroborated
by comparing with the spinless (S = 0) Bose Hubbard models on
hypercubic lattices, which exhibit superfluid-insulator transitions
at finite values of U/t related to the band width of corresponding
fermionic models [4]. Here, we study the Mott transition without
any magnetic order in its original sense, namely, a transition arising
owing to the competition between the kinetic and interaction ener-
gies. In this line of variation theory, it is known that the Gutzwiller
wave function [5], with only onsite correlation factor, is always
metallic, and by itself do not exhibit a Mott transition at finite U/t
for fermions [6]. In previous papers [7,8], however, the authors
showed that first-order Mott transitions actually occur at U/t
roughly of the band width in wave functions with an attractive cor-
relation factor between a doubly occupied site (doublon, D) and an
adjacent empty site (holon, H) [9,10], and argued that the binding of

a doublon (minus charge carrier) to a holon (plus charge carrier)
and the unbinding play the central role in the Mott transition [8].
In this picture, a doublon simply dissociates from a holon in the
metallic side of the critical point, Uc/t; consequently, a doublon
and a holon, namely carriers, can move about independently.

Later on, we have found that Mott transitions occur even in
wave functions in which a doublon must be necessarily accompa-
nied by at least one holon in the nearest-neighbor (NN) sites.
Namely, the state in which a doublon and a holon always tightly
bind one another can be metallic. This finding requires a modifica-
tion of the previous picture of Mott transitions through D–H bind-
ing and simple release [8].

The purpose of this article is to briefly describe an improvement
over the previous D–H binding picture, on the basis of VMC calcu-
lations. To begin with, we study the Mott transition arising in the
completely D–H bound state on the square lattice, which affords
a clue to a new conception. Then, we introduce two characteristic
lengths, the D–H pair binding length nDH and the mutual doublon
exclusive distance nDD. nDH roughly represents the size of a D–H
pair, and nDD the minimum distance between two doublons. Gen-
erally, the two lengths depend largely on U/t. In the metallic phase,
a relation nDH > nDD holds, whereas in the insulating phase, the
relation is reversed. Thus, a Mott transition occurs at a value of
U/t, where nDD becomes equivalent to nDH. By checking a variety
of wave functions, including newly introduced one with long-range
Jastrow factors, we are convinced that this conception is applicable
to a wide range of systems, including Bose Hubbard models [4].

2. Formulation

To tackle the Mott physics, we apply a VMC method to the
single-band Hubbard model (Eq. (1)) at half filling on the square
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lattice. The VMC method is one of few effective approaches to the
Mott transition, because this method can deal with the strong local
correlation accurately, and thereby, systems in the whole range of
correlation strength can be treated continuously. Here, we concen-
trate on a few fundamental wave functions to capture the essence:

j wGi ¼ PG j /Fi; ð2Þ

j wBi ¼ Pd�h
B PG j /Fi; ð3Þ

j wpowi ¼ Pd�h
powPd�d

pow j /Fi; ð4Þ

where j /Fi denotes the Fermi sea. Eq. (2) is the celebrated Gutzw-
iller wave function [4], which adjusts the doublon density by an on-
site correlation parameter g:

PG ¼
Y

j

1� ð1� gÞnjnj
� �

: ð5Þ

Because |wGi is always metallic as far as U/t is finite [6], we refer to
|wGi for a typical metallic state. In Eq. (3), Pd�h

B is written as,

Pd�h
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Y
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1� dj
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where dj ¼ njnj and hj ¼ ð1� njÞð1� njÞ are doublon and holon
operators respectively, and~s varies over the four NN sites of the site
j. |wBi is an extreme case of the D–H binding wave function within
the NN sites [9,10]; the projector Pd�h

B , which has no adjustable
parameter, returns 1 or 0, according as at least one H (D) exists in
the four NN sites of each and every D (H) site or not. Thus, |wBi rep-
resents a state in which D (H) must contact H (D) in the NN sites,
that is, a completely D–H bound state, seemingly insulating.
Although |wBi is always insulating in a one-dimensional chain
[11], |wBi is not necessarily insulating in the square lattice, as we
will discuss later. In Eq. (4), we consider long-range Jastrow-type
correlation factors; the projectors are formally written as,
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where the index j of the outside product varies over all the lattice
sites. In Eq. (7), for a certain j, we count only in the case of the short-
est D-to-H distance (for the first term in the braces) or of the short-
est H-to-D distance (for the second term). This restriction as to
distance is symbolically expressed by tilde (~rj). The index ~rj in the
inside product varies over all the sites of distance rj from the site
j. To measure the distance, we adopt the stepwise or ‘‘Manhattan’’
metric in unit of lattice constant. A similar regulation is applied to
Eq. (8). The functionfdhð~rjÞ½fddð~rjÞ� works as the weight of distance-
dependent D–H attractive [D–D and H–H repulsive] correlation.
Among a wide choice of their forms, we focus on power-law decay-
ing types in this work: fdhð~rjÞ ¼ ~r�n

j and ðfddð~rjÞ ¼ 1� a~r�b
j , because

they are simple to deal with and energetically favorable in some de-
gree. In the attractive projector Pd�h

pow, n in fdhð~rjÞ is a parameter con-
trolling the D–H binding length; for n = 0, the D–H binding effect
vanishes, whereas for n ¼ 1; Pd�h

pow, is reduced to the NN binding
projector Pd�h

B . In the repulsive projector Pd�h
pow, the parameter a con-

trols the magnitude of repulsive factor in the NN sites; and b adjusts
the effective distance of repulsion. Finally, we point out that in the
study of Mott transitions, the attractive (D–H) and repulsive (D–D

and H–H) Jastrow factors should be independently parameterized,
because the roles of the two factors are distinct against this phe-
nomenon. The D–H factor is crucial. In this point, the present factor
Pd�h

powPd�d
pow in Eq. (4) is distinguished from that in previous studies

[12,13].
In VMC calculations, we use systems of NS(=L � L) sites, and im-

pose the boundary conditions periodic in the x direction and anti-
periodic in the y direction (periodic-antiperiodic boundary condi-
tions). For each wave function of Eqs. (2)–(4), we first minimize
the energy and obtain a set of optimized variational parameters,
using a quasi Newton method with recently derived relations
[14] to treat Jastrow factors. Typically, we use the averages of 20
iterations converged, with 250,000 samples for each iteration.
Then, physical quantities are calculated with the optimized param-
eter set.

3. Results

We start with the comparison of minimized total energy per
site Etot/t. In Fig. 1, the VMC estimates of Etot/t are compared among
the three wave functions, Eqs. (2)–(4). The long-range D–H binding
state |wpowi, which includes |wGi and |wBi as extreme cases, is, of
course, the lowest for any U/t, but the improvements on |wGi for
small U/t and on |wBi for large U/t are slight. For a metallic state
with small U/t, the D–H binding effect is little advantageous, and
|wpowi represents a typical metallic state. On the other hand, the
D–H completely bound state |wBi represents an insulating state
for U sufficiently larger than the band width, W (=8t); thus, |wpowi
also represents an insulating state there. This is supported by the
behavior of Etot=t 1� t=U for U=t !1, as shown in Fig. 1. Hence,
|wpowi should exhibits a metal to insulator transition at U �W ,
similarly to the adjacent D–H binding wave function ðUc=t ¼
8:6—8:7Þ [8]. To specify the critical value Uc/t for |wpowi, we con-
sider the doublon density, hDi ¼ 1

NS

P
ihdii, which is an important

quantity as an order parameter of Mott transitions, and propor-
tional to the onsite charge fluctuation. As shown in Fig. 2, the
behavior of hDi for jwpow abruptly changes at U=t � 8:4; for U/
t > 8.4, it rapidly approaches that for jwpowi. Thus, we conclude that
a Mott transition occurs at Uc=t ¼ 8:3 � 8:5 for jwpowi of L = 16,

Fig. 1. Comparison of optimized variational energies among three trial wave
functions, namely, Gutzwiller wave function |wGi, open circle), one with com-
pletely-bound D–H correlation (|wBi, solid square) and one with long-range
Jastrow-type factors (|wpowi, open triangle), as function of correlation strength.
The arrows on the curves indicate the Mott critical point. The dashed line is a guide
line proportional to t/U expected from the strong-coupling expansion. The inset
shows the quasiparticle renormalization factor as a function of U/t. We extrapolate
Z to zero, indicated by an arrow, with the third-order least-square method from the
data for U=t � 2:1.
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