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Multiband superconductors can have several types of domains that are inhibited in conventional single-
band superconductors. These domains are phase domains and chiral domains and their domain wall are
an interband phase difference soliton. In a superconductor with an odd number of electronic bands (five
or more) and with positive interband Josephson interactions, we find other types of domains with differ-
ent interband phase differences. We call these domains configuration domains because pseudo-order
parameters for each band are dispersed in the complex plain and several configurations, which have sev-
eral local minima. Fractional vortices serve as hubs for phase difference solitons (configuration domain

walls). The divergence of the number of configurations with local minima would pose a serious problem
for the stability of superconductivity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Conventional superconductors exhibit one-dimensional unitary
(U(1)) internal space, which is a superconducting quantum phase 0
[1-3]. When the interband Josephson interaction is much smaller
than intraband interactions, multiband superconductors can be
considered to be multicomponent superconductors that have mul-
tiple quantum phases 0,, where v is the band index [4-8]. These
can be called multicomponent superconductors based on the mul-
tiband superconductor in which the superconducting order param-
eters are composed of pseudo-order parameters y/, = [i/,| exp(i6,)
for each band, where |y,|? is the pair density. By applying the
extended London approximation to this system [7-9], we had
presented characteristic phenomena such as an interband phase
difference soliton and fractional flux quanta [7-13]. In the
extended London approximation, the amplitude of the pseudo-
order parameters |i/,|? is held constant. This approximation is based
on the fact that the crystal fields (or a band structure) determine
the number of carriers for each band.

Sometimes, multicomponent superconductivity based on multi-
band superconductors is considered as a symmetry-breaking state
of a U(1)" system, where N is the number of bands [14-17].
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However, the interband interaction drags other gauge fields on
higher-dimensional manifolds (such as a manifold having broken
U(N) symmetry) [18-21]. For example, in a two-band supercon-
ductor, we can identify the electromagnetic U(1) gauge field and
three other gauge fields. Because of the extended London approx-
imation and the real current condition J =0, two degrees of free-
dom are removed; and the Josephson interaction combines three
gauges into a single gauge field [21]. This is the nonmagnetic gauge
field for the interband phase difference, and sometimes (depending
on the ratio ofmv*/|g0v|2 between two bands, where m,* is the mass
of the pair) the manifold for this gauge is noncompact. In three-
band superconductors, the potential surface determined by the
Ginzburg-Landau free energy reduces the number of gauge fields
[13]. The omitted gauge fields determine the dynamics of the
soliton, such as its vibration and deformation in the quantum
phase space, which are ignored in the discussion of the static
and semistatic situation (e.g., a slow translational movement of
the soliton). In multiband superconductors, we consider that
incrementing the number of internal degrees of freedom, the
constraints from crystal fields, and the potential surface of
the Ginzburg-Landau free energy primarily determines topology
of the manifold. The high symmetry and its breakdown do not have
complete informations [22-29].

Recently, experimental observations that indicate the existence
of these new internal degrees of freedom have been reported
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[30-35]. For magnetization, phase difference solitons and frac-
tional vortices have been clearly demonstrated by scanning
microscopy [30,32,33]. In macroscopic experiments, a curiously
strong pinning effect was found in some new superconductors,
which raises the suspicion of domain trapping of fractional vortices
at the domain wall [12,36]. There are several mechanisms that lead
to chiral superconductivity in which we find chiral domains
[12,22,24,25,27,29,37]. The chiral states suggested by three-band
superconductivity are prominent [13,14,16,38-41] (we were
aware of reports [39,40] on these when we published our reports
on chiral superconductivity based on three-band superconductors
[13,41]). In particular, in a recent report [40], neither the high crys-
tal symmetry nor a multidimensional representation due to this
high symmetry is provided. Nondegenerate multiple bands lead
to chiral states by the positive interband Josephson interaction.
From this fact, we can confirm that the multiplicity itself is primary
rather than the high symmetry and its breakdown. Based on this
understanding, we demonstrate a new type of domain, which we
refer to hereinafter as the configuration domain of multiband
superconductors.

2. Model formula

The extended Ginzburg-Landau formalism is convenient for
dealing with multiband superconductors. We also assume the
extended London approximation. With this simplification, we can
understand the physics on a more intuitive level [9,12,13].

The phenomenological free energy f can be expressed as
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where N is the number of bands, e* is the charge of the pair, m,x is
mass, A is the vector potential, and c is the speed of light. The
sum S0, o[y > + & [y, |* gives the energy due to intraband interac-

tions, and g is the energy of the magnetic field. The kinetic energy

term, >, 2;1,.|(?V7%A)|//‘,|2, can be removed to explore the
homogeneous state. The interband Josephson interactions

%( ;z//v + ) determine the relative phase in the homogenous
ground state, where p and v are the band indices [12,13].

To discuss the ground state, we can also neglect the magnetic
contribution. With the extended London approximation, f can be
considerably simplified, as follows [12,13]:
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When the interband interaction is much smaller than the intraband
interaction, we can consider |i,| is determined by f,. Introducing
Iy = Y ll]y 0, we candiscuss the quantum phase using f). As seen
in previous reports, the positive interband Josephson interaction
results in the nontrivial wave leading to chiral superconductivity.
We also explore the same situation for multiband superconductors
having four or more bands. For simplicity, we assume the multiple

equivalent band, and let I'y,, = I" > O for all g and v. In this discussion,
we carefully inspect the effect of high symmetry due to this simplifi-
cation and distinguish between the effect due to symmetry and that
due to multiplicity.

3. Results

Eq. (4) has local maxima or minima for some values that satisfy
ofp/06, = 0. The condition 6, — 6, =0 or 7 gives trivial solutions for
fo. When all the interband phase differences are zero, the trivial
solution corresponds to the s.. wave. In contrast, when some of
the phase differences are 7, the trivial solution is an s. wave.
Because we assume a positive interband Josephson interaction,
the s.. wave gives the highest energy. Among several s. waves,
the one that corresponds to half the term in the sum of Eq. (4) hav-
ing 0, = 0 and half having 6, = m when N is even. When N is three or
more and is odd, this minimum energy is given by 0,=0 for
(N +1)/2 bands with the other bands having 6, = m. We designate
this wave sg.. When there are an odd number of bands, we have
a local minimum at [0,,1 — 0, =2 for every u, where Oy+q = 0.
This wave is designated s, and is shown as an example in Fig. 1a
and b for N =3 and 5, respectively.

We also observe fy(so:) — fo(s.) = £, which means that the waves,
is more stable than the wave sy.. When there are an even number of
bands, fy(so+) — fo(s,) = 0. We show the wave s, for N =4 in Fig. 1c.
Moreover, several other waves have the same energy as fy(So.). For
N=4,0; —03=0, - 04=m and 0; — 0, can be arbitrary, as shown in
Fig. 1d. This can be designated s, +e”s,. Eq. (4) cannot lock
0, — 0. Rotation of 0, — 0, corresponds to the Nambu-Goldstone
mode [42]. To lock in this value, some I';,, values should differ from
other I'y,, values (for example, I'y3 = I'14=1T'23= I'24> I'13=1340r
F12 = F24 = F13 = F34 > F23 = F14). In this Case,()] — 02Wlll be locked
at 0 or w and fy(So:) becomes stable. In the locked phase, the Nambu-
Goldstone mode becomes a phase difference soliton. This instability
also occurs for other larger even numbers of bands. To lock in the
interband phase difference, some different I',, are required (for
Exalzjqple, Iyemoy > Tyawpen = I')oyyy) for higher even numbers of

ands.

4. Discussion

It has been argued that the pure repulsive pair-exchange inter-
action mediates superconductivity in multiband superconductors
[43-46]. The present model suggests the repulsive channel stabi-
lizes s. for an even number of bands without any special symme-
try. For some high-symmetry systems, s. +e’s, might be
possible, and such a system could be interesting if it were consid-
ered to be real superconductivity. However, we currently do not
have any realistic candidate for such a system, and it may be rather
difficult to realize this condition (or it might correspond to the
“non-superconducting/incoherent” pseudogap state in the cuprate
superconductors.[47,48]). Thus, this possibility is not interesting
for investigations of the present coherent superconductivity.

However, an s, wave for an odd-numbered system should be
considered if we are to understand the real phenomenon because
the minimum at |6,., — 6,| = 2% does not disappear even if some
Iy, values change slightly. The system should retain many local
minima of which (N — 1)! diverge upon increasing the number of
bands. When we have only three bands, these local minima are rec-
ognized as different chiral states; but when the number exceeds
three, many other configurations that are different from the chiral
state become possible. For example, we show varying configura-
tions in Fig. 2a-d for N = 5. The energy of these four configurations
gives the local minimum. Even if all I';,, values are not equal, the
local minimum does not disappear when all I';,, values are similar.
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