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a b s t r a c t

This paper describes a new theoretical model to characterize the superconducting microstrip line and
carefully studies the effects of the nonlinearity of superconductors, the strip thickness and losses on cir-
cuit performances. The microstrip line has been considered as a multilayered structure. The integral
equation for the electrical field has been formulated, in the spectral domain, using the exact dyadic
Green’s function of bianisotropic planar media. The Galerkin’s technique has been used for solving this
integral equation. Obtained results concern the effective permittivity constant and the attenuation
constant versus frequency and temperature rate.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The interest in applications of microwave components and de-
vices based on HTS films initiated a new wave of investigations
of physical phenomena in the superconducting films. In many
cases, nonlinear effects limit high-power handling of the HTS films
in linear microwave devices and therefore are desired to be sup-
pressed. However, the nonlinear phenomena can be considered
as useful effects in the design of microwave signal limiters or
frequency mixers [1–5].

The high-temperature superconducting microstrip lines have
been characterized by using the simplified quasi-static approach.
Lee and Itoh [2] have proposed a method (phenomenological loss
equivalence method) to analyze the structures whose strip thick-
ness was in the order of the penetration depth. Another approach,
developed by Nghiem et al. [6], considers the superconducting
strip as equivalent surface impedance.

Almost all the developed approaches consider the effect of
small losses in, or the anisotropy of, the superconducting strip
material as perturbational effects that may not substantially alter
the performance of these devices [3–18].

The analysis of nonlinearity in the superconducting microstrip
line on lossy dielectric substrates requires an accurate full-wave

model accounting for nonlinearity, electromagnetic coupling,
dielectrics and conductors losses.

In this paper, we have developed a new theoretical model to
study the nonlinearity in superconducting microstrip line on lossy
substrate and carefully study the effects of the dielectric structure.

New integral equations for the electrical field components are
formulated, in the spectral domain, using the exact dyadic Green’s
function of a bianisotropic planar media, applied to the supercon-
ducting microstrip lines. The assumption that the superconductor
is not linear necessitates the addition of a second term in the second
member of the electrical field integral equation. This condition to the
limit is imposed along the width of the strip (W), by the integration
on W. Thereby, we obtain a new characteristic equation consequent
of the tangential electrical field components. The characteristic
equation is formulated, in spectral domain, using the developed ex-
act dyadic Green’s function. This equation is solved using the two
dimensional Galerkin’s technique. The characteristics of the super-
conducting microstrip are obtained by the cancellation of the
determinant of the resulting homogenous matrix equation.

2. Theoretical background

Consider the superconducting microstrip line shown in Fig. 1.
The substrate, considered as an arbitrary lossy layer, extends to
infinity in x- and y-directions. The thickness of the metallization
is considered. Then, the surface current is assumed to flow only
in x-, and y-directions in the strip.
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Using the Maxwell’s formulation and applying the three-dimen-
sional dyadic Green’s function of planar bianisotropic media, to the
lossy microstrip, yield the electrical field integral equation given by:
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sðy0; z0Þ is the surface current, and Gðy; z=y0; z0Þ is the two-
dimensional dyadic Green’s function, expressed as follows [5,14]:
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We note here that our assumption of the superconducting
microstrip line as a bianisotropic planar medium requires, to char-
acterize it, an infinitely long bianisotropic microstrip line of width
W, with a longitudinal distribution current of the form:

f ðxÞ ¼ ejksx ð3Þ

The analytical integration of electrical field integral equation
with respect to x, gives the complex propagation constant ks. The
adoption of the dyadic Green’s function of a bianisotropic medium,
for characterizing the microstrip structures of lossy multilayered
substrate and superstrate, and with laminated ground plane,
necessitates the development of new permittivity and permeabil-
ity functions in space domain as:
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where N is the number of substrate layers characterized by their
thicknesses hi, permeabilities l0lri

ð1� j tan dMi
Þ and permittivities

e0eri
ð1� j tan diÞ, Ns is the number of superstrate layers character-

ized by their thicknesses hsi, permeabilities l0lrsi
ð1� j tan dMsi

Þ
and permittivities e0ersi

ð1� j tan dsi
Þ and m is the number of lamina

composite ground plane characterized by their thicknesses tk, per-
meabilities l0lrck

ð1� j tan dMCk
Þ and permittivities ðe0 � j rk

x). We
define the functions Ps(x) and d(x) as follows:

PsðxÞ ¼
1 for � s=2 6 x 6 s=2
0 otherwise
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dðxÞ ¼
1 for x ¼ 0
0 otherwise
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We can apply the developed permittivity and permeability func-
tions expressed by (4) and (5) on our superconducting microstrip
line by considering, in part, the substrate as an arbitrary lossy layer
of thickness h, permeability l0lrð1� j tan dMÞ and permittivity
e0erð1� j tan dÞ, and, in the other part, the one-layered strip and
ground plane (metallization) of thicknesses tk, permeabilities
l0lrck

ð1� j tan dMCk
Þ and permittivities ðe0 � j rk

xÞ with k = 0 and 1
respectively. Hence, the expressions of the permittivity and perme-
ability functions in space domain become:
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The superconducting strip and ground plane are characterized
by their thicknesses and complex conductivity using the two-fluid
conductivity model [3,13]:
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where rn is the normal state conductivity at the closest value of
temperature greater than the critical temperature Tc, kL is the pen-
etration depth of the magnetic field in the superconductor called
London length expressed as follows:

kLðTÞ ¼
k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð T
Tc
Þb

q ð11Þ

with k0 is the penetration depth at T = 0 K.
There are two models which give the values of a and b in the

expressions (10) and (11). The first one is London model, based
on the two-fluid model, valid for the low critical temperature
superconducting.

Considering the thermodynamic constraints, this model re-
quires the following value of a and b:

a ¼ b ¼ 4 ð12Þ
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Fig. 1. Superconductor microstrip line.
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