Physica C 470 (2010) 1916-1919

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Pulsed laser deposition synthesis of superconducting (Cu, C)Ba₂CuO_x thin films

K. Kikunaga^{a,*}, T. Yamamoto^b, Y. Tanaka^c, N. Kikuchi^c, K. Tokiwa^d, T. Watanabe^d, N. Terada^{b,c}

^a National Institute of Advanced Industrial Science and Technology, Tosu 841-0052, Japan

^b Kagoshima University, Kagoshima 890-0065, Japan

^cNational Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan

^d Tokyo University of Science, Noda 278-8510, Japan

ARTICLE INFO

Article history: Received 4 June 2009 Received in revised form 13 April 2010 Accepted 6 July 2010 Available online 10 August 2010

Keywords: High temperature superconductor Thin film PLD (Cu, C)-system 1201 phase Low temperature growth

1. Introduction

A crystal structure in high temperature superconducting cuprates (HTS) is constructed by an alternate stacking of charge reservoir layer (CRL) and infinite layer (IL), the number of CuO₂ planes (*n*) in IL is depend on critical temperature T_c . The superconductors included in a CuO₂ plane (*n* = 1) show lower T_c than that included in some CuO₂ planes (*n* > 1) [1]. Then, the number of CuO₂ planes of almost HTS with $T_c > 60$ K is over two. Multi-layered HTSs, such as MBa₂Ca_{*n*-1}Cu_{*n*}O_{*y*} (M = Hg, Tl, (Cu, C), (Cu, Tl), (Cu, V)) [M-12(*n*-1)*n*] include two or more crystallographically inequivalent CuO₂ planes in a unit cell. They have the potentials of less-anisotropic properties and high critical temperature T_c above 100 K, and unique properties [1–3]. In the highest T_c multi-layered Hg-system, Hg-1201 (*n* = 1) has also higher T_c among HTSs included in a CuO₂ plane [4,5]. Therefore, M-1201 superconductors with $T_c > 60$ K have high potentials.

(Cu, C)Ba₂Ca_{*n*-1}Cu_{*n*}O_{*x*} [(Cu, C)-12(*n*-1)*n*] are one of promising HTS, because of the non-toxic elements and their potential for high critical temperature T_c above 100 K and low anisotropy, a possibility of multi-component superconductivity in multi-layered HTS with a proper interband coupling [1-3,6-23]. For pursuing these potentials of the Cu- and (Cu, C)-systems, (Cu, C)Ba₂Ca₀CuO_{*x*} [(Cu,

E-mail address: k-kikunaga@aist.go.jp (K. Kikunaga).

ABSTRACT

(Cu, C)–Ba–O thin films have been deposited at low growth temperature of 450-570 °C by pulsed laser deposition method. A control of CO₂ gas pressure and the growth temperature, usage of BaCu_yO_x pellet target resulted in an expansion of twice *c*-axis length of BaCuO₂ structure (2c phase) and a significant rise of conductivity. Measurements of *in-situ* XPS suggest that the 2c phase should be (Cu, C)Ba₂CuO_x [(Cu, C)-1201]. The maximum temperature of onset of the superconducting transition and zero resistance state obtained so far were 60 and 47 K, respectively.

© 2010 Elsevier B.V. All rights reserved.

C)-1201] (*n* = 1), which is a fundamental and simplest structure of (Cu, C)-system, should be fabricated. Then it is important to control a little CO₂ pressure, because these materials sensitive to the carbonate. In this study, we have studied deposition of (Cu, C)-1201 thin films by pulsed laser deposition (PLD). Characterization of their transport properties has been investigated. Crystal structure of specimen grown in little CO₂ mixed atmosphere was Ba-CuO₂ infinite layered structure. The *c*-axis length with increases of CO₂ mixed atmosphere was expanded to twice as long as that of BaCuO₂, that was (Cu, C)-1201 structures. The (Cu, C)-1201 films deposited at 500 °C using BaCu_{0.75}O_x target showed superconducting transport, *T_c* = 60–47 K [14–17].

2. Experiment

Specimen films were grown on (1 0 0) plane of SrTiO₃ at temperatures in the range of 450–530 °C by pulsed laser deposition using KrF excimer laser. The used targets were highly dense pellet of BaCu_yO_x (y = 1.0, 0.75, 0.5). The growth conditions were in the following range: reactive pressure = O₂ (3–10 mTorr) + CO₂ (0.01– 0.25 mTorr) + Ar (0–80 mTorr); laser power of shot and repetition frequency were in the range of 100–200 mJ/pulse and 0.5–2.0 Hz, respectively. In order to maintain residual gas level of growth chamber constant, we utilized a load–lock system. After the deposition, the films were cooled at room temperature in an oxygen atmosphere, and protection layers were deposited on the specimen before air exposure. Crystal structure of the films was characterized

^{*} Corresponding author at: National Institute of Advanced Industrial Science and Technology, Tosu 841-0052, Japan.

^{0921-4534/\$ -} see front matter \odot 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2010.07.002

by means of *in-situ* reflection high energy electron diffraction (RHEED) and θ -2 θ scan of X-ray diffractometry. Their transport properties of (Cu, C)-1201 thin films were characterized by four probe method.

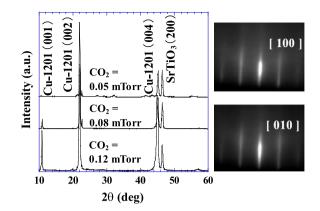

3. Results and discussion

Fig. 1 shows typical XRD and RHEED patterns of the films grown the BaCuO₂ target with whether the addition of CO₂ gas or not. For the films grown at 450 °C without CO₂ gas, some equilibrium phase coexisted, as shown in Fig. 1a. For the films with a small introduction of CO₂ (0.04 mTorr) into the growth atmosphere, epitaxial relationship of Ba–Cu–O [1 0 0]/SrTiO₃ [1 0 0], Ba–Cu–O [0 1 0]/SrTiO₃ [0 1 0], Ba–Cu–O [0 0 1]/SrTiO₃ [0 0 1] were confirmed. The data also showed tetragonal symmetry with lattice constant of a ~3.85 Å and *c* = 4.05 Å, as shown in Fig. 1b. Though these films had an ideal infinite layer structure, they were highly resistivity ($\rho_{[290 \text{ K}]} > 0.1-1.0 \Omega \text{ cm}$) and exhibited a negative temperature coefficient of resistivity. Crystal structure and transport properties were drastically changed by the addition of CO₂ gas during the deposition.

Fig. 2 shows a change of XRD patterns of the films grown from $BaCuO_2$ target with an increase of CO_2 gas. In the range of $CO_2 < 0.03$ mTorr, the specimens had the simple infinite layer structure. Further increase of CO_2 gas resulted in the formation of a new phase, which *c*-axis length was expanded to twice as long as that of the infinite layer $BaCuO_2$ structure. This phase is represented as "2*c*" phase below. Amorphous $CaCuO_x$ protection layer was deposited on the films before breaking the vacuum, since the 2*c* phase was chemically unstable. The resistivity of the amorphous protection layers were estimated at over $10^3 \Omega$ cm. The 2*c*

Fig. 1. X-ray diffractogram and RHEED patterns of Ba–Cu–O film grown at 450 °C from BaCuO₂ target (a) without CO₂ gas and (b) with a little CO₂ gas (1×10^{-5} Torr). Indices in RHEED patterns show along which electron beam was incident.

Fig. 2. Change of X-ray diffraction patterns of the Ba–Cu–C–O films as a function of pressure of CO_2 , and typical RHEED patterns of them.

phase were lower resistivity ($\rho_{[290 \text{ K}]} > 10^{-2} \Omega \text{ cm}$) and exhibited a positive or almost zero temperature coefficient of resistivity, these films did not show superconductivity above 15 K. Table 1 shows a relationship between used BaCu_yO_x (y = 1.0, 0.75, 0.5) target and conductivity of the 2c phase. The maximum conductivity with an order of 10^4 S/cm was achieved in the 2c phase films grown from the BaCu_{0.75}O_x target at a noteworthy low growth temperature around 500–550 °C.

In-situ XPS measurement of the 2c phase showed a rather high concentration of CO₃ groups. The ratio of carbon in the CO₃ group to Cu was in the range 20-30%. XPS results also showed that the Cu/Ba ratio of this phase was lower than that in the infinite layer $BaCuO_2$ (Cu/Ba = 1.0). The metallic transport properties of this phase mean that there was structural perfection of the CuO₂ planes in this phase. Also, comparison of the valence band spectra of the 2c phase superconducting films with different T_c and SrCuO₂ reveals that the superconductivity of the 2c phase films should be induced by hole-doping and better hole-dopability than SrCuO₂ [15]. Moreover, in comparison of the valence band spectra of the 2c phase superconducting films with $T_c = 42$ K and other HTS, the position of the (Cu, C)-1201 specimen almost coincided with that of YBCO [15]. This suggests the presence of a heavily doped (Cu, C)-O charge reservoir structure in the high T_c 2c phase films, like Cu-O chains in YBCO. Therefore, one of the most possible structures should be an alternative stacking of CuO₂ and (Cu, C)-O layers separated by a Ba-O one. In the (Cu, C)-O layer, almost half of Cu sites would be substituted with CO₃. These results suggest that the 2c phase structure should be (Cu, C)Ba2CuOx [(Cu, C)-1201] = $[(Cu, C)-O-BaO-CuO_2-BaO-(Cu, C)-O]$. Therefore, the XRD peak that appeared at 2θ around 11° was assigned as the (001) diffraction peak of the (Cu, C)-1201 phase. In the case of using $BaCu_{0.5}O_x$ target, the structure would be $BaCuO_2(CO_3)_x$ that was reported by Koller et al. [18].

In the target–substrate spacing D = 30 mm, decrease of P_{Ar} means an increase of growth rate mainly due to the reduction of scattering of the ablated species by the atmospheric gases. I(0 0 1)/I(0 0 4) showed a bow-shape dependence on P_{Ar} ; in the high region of P_{Ar} , I(0 0 1)/I(0 0 4) increased with a decrease of P_{Ar} . Though further decrease of P_{Ar} increased growth rate more,

Table 1 Relationship between used $BaCu_yO_x$ (y = 1.0, 0.75, 0.5) target and conductivity of the 2c phase films.

Cu/Ba	Resistivity (Ω cm)
1.0	$10^{-1}-10^{-2}$
0.75	$10^{-3}-10^{-4}$
0.5	>1.0

Download English Version:

https://daneshyari.com/en/article/1818606

Download Persian Version:

https://daneshyari.com/article/1818606

Daneshyari.com