Physica C 470 (2010) 313-317

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

L.J. Li^a, X.D. Zhu^{a,b}, Y.P. Sun^{a,b,*}, H.C. Lei^a, B.S. Wang^a, S.B. Zhang^a, X.B. Zhu^a, Z.R. Yang^a, W.H. Song^a

^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China ^b High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

ARTICLE INFO

Article history: Received 20 November 2009 Accepted 16 January 2010 Available online 25 January 2010

Keywords: Superconductivity Single crystals Charge density wave

ABSTRACT

The superconductivity of 2H-Ni_xTaS₂ single crystals with Ni-doping content of $0 \le x \le 0.08$ is investigated. Compared with the temperature dependence of resistivity $\rho(T)$ curve of un-doped 2H-TaS₂ with charge density wave (CDW) transition ($T_{CDW} = 78$ K), no sign of CDW is observed for Ni-doping sample Ni_xTaS₂, meaning the suppression of CDW caused by Ni-doping. The increase of superconducting critical temperature T_C caused by Ni-doping is observed and the optimal Ni-doping content corresponding to the maximum zero resistance temperature $T_{C2ero}^{max} = 4.15$ K is x = 0.04. The superconductivity of Ni_{0.04}TaS₂ is investigated in detail. The obtained superconductor with anisotropy ratio $\gamma = H_{c2}^{ab}(T)/H_{c2}^{c}(T) \approx 3.58$. © 2010 Elsevier B.V. All rights reserved.

1. Introduction

Layered transition-metal dichalcogenides (TMDC's) of the type MX_2 (M is the transition metal, X = S, Se, Te) have been extensively studied for their rich electronic properties due to low dimensionality [1]. Each layer of TMDC's consists of a hexagonal transition metal sheet sandwiched by two similar chalcogen sheets, which can be regarded as stacking of covalent coupling X-M-X sandwiches, and the coupling between sandwiches being of weak van der Waals type. Charge density wave (CDW) and superconductivity coexist in most these materials such as 2H-TaSe₂, 2H-NbSe₂, 2H-TaS₂, 4Hb-TaS₂, and 4Hb-TaSe₂ [2-4]. The electron-phonon coupling and its relationship with the CDW have been investigated by angle resolved photoemission in 2H-TaSe₂ and 2H-NbSe₂ systems [5-7]. It is found that the CDW transition temperature decreases and meanwhile the superconducting critical temperature (T_c) increases, in TaSe₂ and TaS₂, which indicates that these two kinds of quantum orders (CDW and superconductivity) compete with each other [8-10]. CDW and superconductivity are two very different cooperative electronic phenomena, and yet both occur because of Fermi surface instabilities and electron-phonon coupling. CDW represents the periodic modulation of the charge density in solids, which is usually found in low-dimensional materials. 2H-TaS₂, a classic, layered TMDC, undergoes a CDW transition at \sim 78 K and a superconducting transition at \sim 0.8 K [1,2].

The intercalation effects in TaS₂ have attracted extensive efforts during the past decades [11–14]. With 3d-transitional metal (3d-TM) intercalation, enhancement of superconductivity and suppression of CDW has been observed in Fe_{0.05}TaS₂ [15], and copper intercalated Cu_xTaS₂ polycrystalline samples [16] and single crystals [17]. Very recently, the raise of T_C within low Ni-doping content Ni_{0.05}TaS₂ single crystals have been also observed [18]. In this paper, Ni_xTaS₂ single crystals with different Ni-doping content of $0 \le x \le 0.08$ are grown and their superconductivities are systemically investigated by the magnetic, electronic and heat transport experiments. For Ni_{0.04}TaS₂ single crystal with the maximum T_C its superconducting parameters are obtained.

2. Experimental

2*H*–Ni_xTaS₂ single crystals with *x* = 0, 0.02, 0.04, 0.05, 0.06, and 0.08 were grown using the NaCl/KCl flux method [19]. The room temperature crystal structure and lattice constants were determined by powder and single crystal X-ray diffraction (XRD) (Philips X'pert PRO) using Cu K α radiation. To perform the powder XRD experiment, several single crystals were crushed to powder. Magnetization measurements were performed in a Quantum Design (QD) superconducting quantum interference device (SQUID) MPMS system ($1.8 \le T \le 400$ K, $0 \le H \le 5$ T). Resistivity measurements were carried out by the standard four-probe method in the temperature range of 1.8–300 K in a commercial QD Physical Property Measurement System (PPMS, $1.8 \le T \le 400$ K, $0 \le H \le 9$ T). Specific heat was measured by the thermal relaxation method (QD, PPMS) in the temperature range of 2–15 K.

^{*} Corresponding author. Address: Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. Tel.: +86 551 559 2757; fax: +86 551 559 1434.

E-mail address: ypsun@issp.ac.cn (Y.P. Sun).

^{0921-4534/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2010.01.042

Fig. 1. (a) The photograph of Ni_xTaS_2 single crystals. (b) The magnification plot of (006) peak of Ni_xTaS_2 single crystals. (c) The powder XRD patterns of crushed single crystals. (d) The curve of the lattice constants *a* and *c* as a function of Nidoping level in Ni_xTaS_2 single crystals.

3. Results and discussion

Fig. 1a¹ shows the typical single crystal photos. The grown crystals are dark blue, mirror-like plates with a typical size of $1.5 \times 1.5 \times 0.2 \text{ mm}^3$. The structures of the single crystals are determined by XRD pattern. The XRD patterns for Ni_xTaS₂ single crystals with x = 0, 0.02, 0.04, 0.05, 0.06, and 0.08 indicates that the orientations of the crystal surfaces are perpendicular to $(0 \ 0 \ 1)$ plane. The magnified plot of $(0 \ 0 \ 6)$ peak is displayed in Fig. 1b. Obviously, the $(0 \ 0 \ 6)$ peak position shifts to high angle with increasing

Ni-doping content, implying the decrease of the *c*-axis lattice constant. In order to obtain the lattice constants of Ni-doped samples, the powder XRD patterns of crushed single crystals are shown in Fig. 1c, and all the peaks can be well indexed to the 2H structure, meaning Ni-doping does not change the crystal structure of 2H-TaS₂. The lattice constants obtained by fitting powder XRD patterns are shown in Fig. 1d. It shows that the Ni-doping almost does not change the value of the lattice constant *a*, while it obviously reduces the lattice constant c. That is to say, the Ni-doping causes the shrinkage of the lattice along the *c*-axis direction, which is in contrast to the expansion of the lattice along c-axis direction caused by Cu-intercalation in Cu_xTaS₂ [16,17]. Considering the smaller ion radius of Ni compared with Ta ions, the reduction of lattice constant c suggests that Ni ions do not occupy the intercalation position S-Ta-S interlayer and but substitute on the position of Ta in S-Ta-S laver. The reason why Cu and Ni ions occupy different positions in 2H-TaS₂ lattice needs to be examined further.

In order to investigate the effect of Ni-doping on the CDW transition, the temperature dependence of the in-plane resistivity $\rho_{ab}(T)$ of Ni_xTaS₂ single crystals is measured. In Fig. 2a we plots the resistivity $\rho_{ab}(T)$ for Ni_xTaS₂ as a function of temperature under zero field in the temperature range of 2–280 K. It shows that $\rho_{ab}(T)$ almost follows a linear temperature dependence with no obvious change of curvature (like a kink) corresponding to the CDW transition observed in the high temperature region. That is to say, the CDW transition occurring at T_{CDW} = 78 K for 2*H*–TaS₂ is suppressed by Ni-doping, even if Ni-doping content is only 2%. Compared with

Fig. 2. (a) The temperature dependence of the resistivity $\rho_{ab}(T)$ for Ni_xaS₂. The inset shows the enlarged view of the low temperature part. (b) The Ni-doping level dependence of T_c^{onset} and T_c^{zero} .

¹ For interpretation of color in Figs. 1–7, the reader is referred to the web version of this article.

Download English Version:

https://daneshyari.com/en/article/1819059

Download Persian Version:

https://daneshyari.com/article/1819059

Daneshyari.com