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a b s t r a c t

Based on an antiferromagnetic (AFM) spin fluctuation approximation, we study the superconducting gaps
in Fe-based compound using two-band model. We find that our results are consistent with the previous
work that concludes sign-reversal extended s-wave pairings between different Fermi surface sheets. The
different superconducting gap magnitude around different Fermi surface sheets is probably due to the
different density of states on them. This calculation can give insight to the recent angle-resolved photo-
emission (ARPES) experiments on these materials. To detect the phase variation of the superconducting
gap over the Fermi surfaces, we propose a new method for measuring the particular wave vector phonon
linewidth. In the case of the sign-reversal superconducting pairing, the linewidth shows continuities
compared to the case of no phase variation.

� 2010 Elsevier B.V. All rights reserved.

The superconductivity found in Fe-based materials has at-
tracted much attention [1–6]. Similar to cuprate superconductors,
these materials are layered systems with a phase diagram where
AFM phase is adjacent to the superconducting phase at low tem-
peratures [7–9]. To understand the superconductivity of these
materials it is essential to determine the superconducting pairing
symmetry. Though extensive studies have been carried out, exper-
imental results on the pairing symmetry in Fe-based superconduc-
tors are still controversial. Some experiments suggest the possible
occurrence of conventional superconductivity [10–12]. Other sug-
gest the possible occurrence of unconventional pairing [13–18].
Based on these experiments, several quite different theoretical pro-
posals for its pairing symmetry such as the spin-singlet s-wave
[19], the d-wave [20] and even the spin-triplet p-wave [21], have
been put forward for different election interactions. Despite of
the above exciting research progresses, it is still controversial for
the gap symmetry. In particular, the recent ARPES experiments
suggest that the superconducting gap magnitude are different on
different Fermi surface sheets [22,23]. Some experiments suggest
that the superconducting pairing state exhibits nodal behaviors
[24,25]. So, there are still some experimental results to be ex-
plored: How to understand the different superconducting gap
magnitude of the ARPES experiment. If the superconducting gap
phase of the electron Fermi pockets is different from the holes,
how can we detect it.

To begin with the two problems, we give three limitations for
our consideration. First, though some groups propose that the elec-
tron–phonon interaction may be responsible for superconducting
in the Fe-based materials, the calculated electron–phonon spectral
function a2F(x) and coupling k for these compounds can not
explain Tc > 26 K [26]. Therefore, we assume that the electron–
phonon interaction in these materials is not the candidate account-
ing for the superconductivity. From the phase diagram we can see
that the superconducting phase is adjacent to the AFM. We suggest
that the superconductivity here is mediated by spin fluctuations.
Second, the LDA band calculations indicate that two bands may
be able to reproduce the main features of the four Fermi pockets.
In this paper, we employ an effective two-band model Hamiltonian
to explore the spin fluctuations and the superconductivity. Some
groups use multiband to explore the superconducting property.
We can extend our method readily to multiband of these com-
pounds. Third, some argue the AFM spin fluctuations in these
materials stemming from the interorbital Coulomb repulsion, the
intraorbital Coulomb repulsion and the Hund’s coupling. For sim-
plicity we do not deal with these details. We will consider the
intraorbital Coulomb repulsion influence on our results.

We start from an effective two-band model Hamiltonian [27,28]

H0 ¼
X
k;r

WþrðkÞ½ðeþðkÞ � lÞI þ e�ðkÞs3 þ exyðkÞs1�WrðkÞ ð1Þ

with Wþr ðkÞ ¼ ðdxrðkÞdyrðkÞÞ. Here si are the usual Pauli matrices and
e�ðkÞ ¼ 1

2 ½exðkÞ � eyðkÞ�; exðkÞ ¼ �2t1 cos kx � 2t2 cos ky � 4t3 cos kx cos
ky; eyðkÞ ¼ �2t2 cos kx � 2t1 cos ky � 4t3 cos kx cos ky; exyðkÞ ¼
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�4t4 sin kx sin ky. Take the canonical transformation
WrðkÞ ¼

P
m¼�ur

mðkÞamrðkÞ with ux
þðkÞ ¼ uy

�ðkÞ ¼ sgnðexyðkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ

e�ðkÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
�ðkÞþe2

xyðkÞ
p

r
; uy
þðkÞ ¼ �ux

�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

e�ðkÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
�ðkÞþe2

xyðkÞ
p

r
, then we have

H0 ¼
P

m¼�;rEmðkÞaþmrðkÞamrðkÞ; E�ðkÞ ¼ eþðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
�ðkÞ þ e2

xyðxyÞ
q

� l.

In our calculations, we have used t1 = �1, t2 = 1.3, t3 = t4 = �0.85 and
l = 1.45. In Fig. 1a, we plot the band structure of the two-band dis-
persion. Obviously, there exist two hole Fermi surfaces around (0,0)
and two electron Fermi surfaces around (p, 0). In Fig. 1b we show
the Fermi surfaces for the same set of parameters.

Now we study the spin susceptibility for this tight-binding
model. The orbital dependent spin susceptibility is defined as

vstðq; iXÞ ¼
R b

0 dseiXs < TsSsð�q; sÞ � Stðq;0Þ >, here s,t = 1,2 label
the orbital indices, and SsðqÞ ¼ 1

2

P
kW
þ
saðkþ qÞ~rWsbðkÞ is the spin

operator labeled by s. The physical spin susceptibility is given by
vSðq; iXÞ ¼

P
s;tvstðq; iXÞ. The one loop spin susceptibility we

considered here can be obtained as vSðq; iXÞ ¼
� T

2N

P
k;xn

Tr½Gðkþ q; ixn þ iXÞGðk; ixnÞ�, where the one electron
Matsubara Green function is given by Gðk; ixnÞ ¼
ðixn�eþðkÞÞbI�e�ðkÞŝ3�exyðkÞŝ1
ðixn�EþðkÞÞðixn�E�ðkÞÞ . The static spin susceptibility vS(q,0) shows

the largest value around q = (p,0), which suggests a transition to
an antiferromagnetic order phase at some critical conditions. This
is also in agreement with recent neutron scattering experiment.
One can obtain the RPA spin susceptibility considering the elec-
tron–electron interorbital interaction V, intraorbital interaction U
and the Hund coupling J, which is given by

vRPA
S ðq; iXÞ ¼ vSðq; iXÞð1� CvSðq; iXÞÞ

�1
: ð2Þ

Where, the interaction vertex C has the following matrix form [28],

D̂k ¼
U J=2

J=2 U

� �
: ð3Þ

We find that the spin susceptibility is enhanced around (p,0), but
the structure of v(q) remains qualitatively the same.

To discuss the nature of superconductivity, we will carry out the
calculations by using the intraorbital interaction U. We have the
effective pairing potential for the singlet channel [29],

Vsðq;xlÞ ¼ U þ 3
2

U2vRPA
S ðq;xlÞ �

1
2

U2vcðq;xlÞ: ð4Þ

For U > 0, the spin fluctuation dominates over the charge
fluctuation. We will ignore the charge fluctuation. Then, the super-
conducting gap functions are obtained by solving the linearized
Éliashberg’s equations,

kD1ðkÞ ¼ �
X

k0
Vsðk� k0;0Þ tanhðbE2ðk0Þ=2Þ

2E2ðk0Þ
D2ðk0Þ

kD2ðkÞ ¼ �
X

k0
Vsðk� k0;0Þ tanhðbE1ðk0Þ=2Þ

2E1ðk0Þ
D1ðk0Þ ð5Þ

with b = 1/kBT. These equations have been shown to produce the
dx2�y2 -wave pairing in the tetragonal lattice cuprates [30,31]. In
the calculation, we decrease the temperature T gradually to search
for the SC state, when the eigenvalue k = 1 the SC state is reached.
The calculations are carried out by dividing the extended Brillouin
zone into 60 � 60 grids.

In Fig. 2, we present the self-consistent gap solutions. From the
figure we can see that the two gaps are extended s-waves. There
are three characters of the gaps: (a) The gaps have no nodes around
all the Fermi surface sheets (the dot line in the figure are Fermi sur-
faces). (b) The signs of D1 and D2 is opposite. (c) The gap magni-
tude are different on different Fermi surfaces.

Next we give an explanation of the above results. The effective
pairing potential Vs is determined mainly by the static spin suscep-
tibility vRPA

S ðq;x ¼ 0Þ. vRPA
S ðq;x ¼ 0Þ peaks near (p,0), so the par-

ing interaction in the spin-single channel is positive and has the
largest intensity around the wave vector q = (p,0). From the Elish-
berger equations, we can see that the gap functions D have the
largest magnitude and must change sign when k and k

0
are con-

nected by (p,0). Therefore they give rise to the sign reversal gap
pairing. We also see that the magnitude of D1(k) is different from
D2(k) from the figure. An explanation of this result is as follows.
From the Elishberger equation we can see that the magnitude of
the gap is proportional to the local density of states (DOS) of the
system. This is more obvious in the conventional BCS theory. In
our case, the DOS can be written as N(k) = 1/jrke(k)j with e(k)
the quasi-particle dispersion. From Fig. 1 we can see that the
DOS near the electron Fermi surface is different from that of the
holes. Thus, the magnitude of D1(k) is different from that of
D2(k). Based on this discussion we speculate that the ratio of the
magnitude of the two gaps would vary with the doping. The calcu-
lated result shown in Fig. 3 confirms our speculation. Next we give
some remarks on our results with the ARPES experiments [22,23].
We observed that our results are not quite the same as ARPES. In
the experiments, they found that the ratio of the magnitude of
the gap is different not only between electron and hole Fermi pock-
ets, but also between the hole Fermi pockets. We think that these
discrepancies are not fundamental and can be reconciled without
modifying the essential part of our results in the following reasons.
First, we note that our result is sensitive to the DOS, so the discrep-
ancies lie on the dispersion we used here. Second, in this weak-
coupling approach we do not consider the renormalization of the

Fig. 1. (a) The band structure of the two-band model with t1 = �1, t2 = 1.3,
t3 = t4 = �0.85, l = 1.45. The dashed line indicates the Fermi level. (b) The Fermi
surface in the unfolded Brillouin zone. The line with an arrow denotes the nesting
vector q = (p,0) between the hole and electron Fermi pockets.

Fig. 2. Pairing gap functions in the unfolded Brillouin zone for U = 3.0 with T = 0.01
for l = 1.45. (a) D1 for electron band. (b) D2 for hole band.
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