Physica C 469 (2009) 960-964

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Effect of intervening structure between CuO_2 sheets in heavily Fe-substituted high- T_c superconductor FeSr₂YCu₂O_{6+ δ}

T. Mochiku ^{a,b,*}, Y. Hata ^c, T. Wuernisha ^d, Y. Matsushita ^e, Y. Katsuya ^f, S. Ishimaru ^f, M. Tanaka ^e, K. Kobayashi ^e, A. Hoshikawa ^d, T. Ishigaki ^d, H. Yasuoka ^c, K. Hirata ^a

^a Superconducting Materials Center, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan

^b Quantum Beam Center, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan

^c Department of Applied Physics, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

^d Frontier Research Center for Applied Nuclear Sciences, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

^e Beamline Station, National Institute for Materials Science, 1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

^fSPring-8 Service Co. Ltd., 2-23-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 678-2501, Japan

ARTICLE INFO

Article history: Available online 29 May 2009

PACS: 74.62.Dh 74.72.Bk

 $\begin{array}{l} \textit{Keywords:} \\ \text{FeSr}_2\text{YCu}_2\text{O}_{6+\delta} \\ \text{Cationic order} \\ \text{Fluorite} \end{array}$

1. Introduction

Heavily Fe-substituted Ba2YCu3O6+&-type compound FeSr2Y-Cu₂O_{6+δ} exhibits superconductivity around 60 K only when it is annealed in N₂ and subsequently in O₂, although the as-sintered FeSr₂YCu₂O_{$6+\delta$} compound did not exhibit superconductivity [1]. Neutron powder diffraction study indicates that the N₂-annealing causes order of Cu and Fe to prevent the substitution of Fe for Cu on the superconducting CuO_2 sheets, and that the O_2 -annealing supplied carrier on the CuO₂ sheet to exhibit superconductivity [2]. Although other lanthanoid elements (Nd, Sm, Eu, Gd, Dy, Ho, Er and Tm) can be substituted for Y in $FeSr_2YCu_2O_{6+\delta}$, the compounds with large ionic radius do not exhibit superconductivity or exhibits superconductivity at lower temperature than T_c of FeS $r_2YCu_2O_{6+\delta}$, even if those are annealed along the same process as superconducting $FeSr_2YCu_2O_{6+\delta}$ compounds [3]. We have investigated the correlation between the ionic size and superconductivity using neutron powder diffraction of FeSr₂MCu₂O_{6+ δ} (M = Y_{1-v}Nd_v) with the variation of the ionic radius at the M site, because Sm

* Corresponding author. Address: Superconducting Materials Center, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan. Tel.: +81 29 859 2320; fax: +81 29 859 2301.

E-mail address: mochiku.takashi@nims.go.jp (T. Mochiku).

ABSTRACT

Heavily Fe-substituted $Ba_2YCu_3O_{6+\delta}$ -type compound FeSr₂YCu₂O_{6+ $\delta}} exhibits superconductivity around 60 K, only when it is annealed in N₂ and subsequently in O₂. Cationic distribution in this compound is strongly dependent on ionic radius at the Y site, and its superconducting properties are affected by the cationic distribution. In contrast, although the compound with the substitution of fluorite-type unit for Y has cationic order, it does not exhibit superconductivity. We have analyzed the crystal structure of the compounds with the substitution of other lanthanoid elements for Y and with substitution of fluorite-type unit for Y.</sub>$

© 2009 Elsevier B.V. All rights reserved.

and Eu have extremely strong absorption of neutron [4]. It indicates that the increase of the ionic size yields the change of the cationic distribution from order to disorder of Cu and Fe, and Sr and Nd, and accordingly T_c decreases.

Meanwhile, fluorite-type unit can be substituted for the M layer between adjacent CuO_2 sheets in $FeSr_2MCu_2O_{6+\delta}$ with the sheets stacked in the sequence $(FeO_{\delta})_0(SrO)_c(CuO_2)_0(M)_c(CuO_2)_0(SrO)_c$ according to a descriptive method proposed by Santoro et al. [5]. The compound with the fluorite-type unit has the sheets stacked in the sequence $(FeO_{\delta})_{0}(SrO)_{c}(CuO_{2})_{0}(M')_{c}(O_{2})(M)_{0}(CuO_{2})_{c}(SrO)_{0}$ with the composition of $\text{FeSr}_2M'_2\text{Cu}_2O_{8+\delta}$ where M' is $\text{Ln}_{1-\nu}\text{Ce}_{\nu}$ and Ln is lanthanoid element except for Ce. Fig. 1 shows both crystal structures of $FeSr_2MCu_2O_{6+\delta}$ and $FeSr_2M'_2Cu_2O_{8+\delta}$, which were drawn with the visualization program VESTA [6]. Yang et al. [7] reported the crystal structure and physical properties of $FeSr_2M'_2Cu_2O_{8+\delta}$ (M' = Ln_{0.25}Ce_{0.75}; Ln = Eu, Gd and Tb). While FeS $r_2(Eu_{0.25}Ce_{0.75})_2Cu_2O_{8+\delta}$ exhibits antiferromagnetic order below 25 K, other compounds show the Curie-type paramagnetic behavior. This indicates that the physical properties are sensitive to kind of lanthanoid element in the fluorite-type unit, like $FeSr_2MCu_2O_{6+\delta}$ with the substitution of lanthanoid elements [8]. We have succeeded in synthesis of the $FeSr_2M'_2Cu_2O_{8+\delta}$ compounds (M' = $Ln_{0.65}Ce_{0.35}$; Ln = Eu, Gd and Tb) with different composition from the previous report [7]. We cannot perform neutron diffraction

^{0921-4534/\$ -} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2009.05.117

Fig. 1. Crystal structure of (a) $FeSr_2MCu_2O_{6+\delta}$ and (b) $FeSr_2M'_2Cu_2O_{8+\delta}$.

measurements for the Eu- and Gd-included compounds because Eu and Gd have extremely strong absorption of neutron. Therefore, we have performed high-resolution X-ray powder diffraction measurements to investigate the structural difference by the variation of the lanthanoid elements in the FeSr₂M'₂Cu₂O_{8+ δ} system, as compared with FeSr₂MCu₂O_{6+ δ}.

2. Experimental

The FeSr₂M'₂Cu₂O_{8+ δ} samples (M' = Ln_{0.65}Ce_{0.35}; Ln = Eu, Gd and Tb) were prepared by the solid-state reaction of stoichiometric mixtures of Fe₂O₃, SrCO₃, Eu₂O₃, Gd₂O₃, Tb₄O₇ and CuO powders. The same process was performed to all samples as follows, to prepare the samples with fixed oxygen content, $8 + \delta$. The mixtures were sintered at 1050 °C for 24 h in air, ground and then pressed into pellets. The pellets were sintered at 1050 °C for 24 h in air. Finally, the as-sintered samples were oxidized at 350 °C for 24 h in high oxygen pressure of 20 MPa. The $FeSr_2M'_2Cu_2O_{8+\delta}$ -type structure are stabilized in the limited composition range, and at least in our sintering condition this compound can be synthesized only when $M' = Ln_{0.65}Ce_{0.35}$ and Ln = Eu, Gd and Tb. The DC magnetization of the oxidized samples was measured with a SQUID magnetometer. High-resolution X-ray powder diffraction data were taken with the imaging plate diffractometer at the BL15XU beamline at the synchrotron radiation facility, SPring-8, at Hyogo, Japan. The samples were put in the capillaries and the intensity data were collected using monochronized X-ray with the wavelength of 0.065300 nm at room temperature.

3. Results and discussion

Fig. 2 shows the temperature dependence of the DC magnetization in magnetic field of 10 Oe for the $FeSr_2M'_2Cu_2O_{8+\delta}$ samples, as compared with the oxidized $FeSr_2Y_{1-y}Nd_yCu_2O_{6+\delta}$ samples. While T_c of $FeSr_2Y_{1-y}Nd_yCu_2O_{6+\delta}$ decreases with the increase of the Nd content, *y*, corresponding to the ionic size at the M site, $FeSr_2M'_2Cu_2O_{8+\delta}$ does not exhibit superconductivity despite of the variation of the lanthanoid elements. While $FeSr_2(Gd_{0.65}Ce_{0.35})_{2-1}$

Fig. 2. Temperature dependence of the DC magnetization for (a) $\text{FeSr}_2M'_2\text{Cu}_2\text{O}_{8+\delta}$ ($M' = \text{Ln}_{0.65}\text{Ce}_{0.35}$; Ln = Eu, Gd, Tb) and (b) $\text{FeSr}_2M\text{Cu}_2\text{O}_{6+\delta}$. ($M = \text{Y}_{1-y}\text{Nd}_y$; y = 0, 0.25, 0.5, 0.75, 1).

Table 1

Final results of the Rietveld refinements for $FeSr_2M'_2Cu_2O_{8+\delta}$ (tetragonal, *14/mmm*) where M' = $Ln_{0.65}Ce_{0.35}$. B_m and B_o are the isotropic atomic displacement parameters at the metal and oxygen sites, respectively, in nm². Numbers in parentheses are estimated standard deviations of the last significant digit.

Ln	Eu	Gd	Tb
R _{wp}	3.00%	3.38%	4.75%
Rp	1.68%	1.94%	2.63%
R _R	14.35%	16.01%	21.58%
R _B	5.98%	5.77%	3.13%
R _F	3.93%	4.13%	1.97%
a (nm)	0.38418(1)	0.38375(1)	0.38372(2)
<i>c</i> (nm)	2.81445(5)	2.81248(7)	2.81347(18)
Z _{Sr}	0.4258(1)	0.4257(1)	0.4264(1)
Z _{M'}	0.2956(1)	0.2955(1)	0.2952(1)
<i>z</i> _{Cu}	0.1402(1)	0.1402(1)	0.1410(2)
Z _{O(2)}	0.0663(4)	0.0675(4)	0.0649(7)
Z ₀₍₃₎	0.1457(3)	0.1452(3)	0.1478(5)
$B_{\rm m} ({\rm nm}^2)$	0.0187(1)	0.0183(2)	0.0184(3)
$B_o(nm^2)$	0.0203(9)	0.0197(10)	0.0152(18)

Cu₂O_{8+ δ} and FeSr₂(Tb_{0.65}Ce_{0.35})₂Cu₂O_{8+ δ} exhibit the Curie-type paramagnetic behavior, FeSr₂(Eu_{0.65}Ce_{0.35})₂Cu₂O_{8+ δ} exhibits the antiferromagnetic order at 17 K. Those results are consistent with the previous report [6], and indicate that oxidizing in high pressure to supply carrier onto the CuO₂ sheets is not effective on exhibiting superconductivity in FeSr₂M'₂Cu₂O_{8+ δ} with the fluorite-type unit although it is effective in FeSr₂YCu₂O_{6+ δ} without the fluorite-type unit. The appearance of the magnetic behavior in FeSr₂M'₂Cu₂O_{8+ δ} is similar to that when superconductivity weakens in FeS-r₂MCu₂O_{6+ δ} [8].

The crystal structure of the FeSr₂ $M'_2Cu_2O_{8+\delta}$ samples was refined using the Rietveld refinement program RIETAN-FP [9] on the basis of the tetragonal $(Ba_{1-x}Nd_x)_2(Nd_{1-y}Ce_y)_2Cu_3O_{8+\delta}$ -type structure with the space group *I4/mmm* [10]. The atomic coordinates are

Sr	in 4e:	0	0	Ζ,
M′	in 4e:	0	0	Ζ,
Fe	in 2a:	0	0	0,
Cu	in 4e:	0	0	Ζ,
O(1)	in 4 <i>c</i> :	0	1⁄2	0,
O(2)	in 4e:	0	0	Ζ,
O(3)	in 8g:	0	1⁄2	Ζ,
0(4)	in 4 <i>d</i> :	0	1⁄2	1/4

Download English Version:

https://daneshyari.com/en/article/1819320

Download Persian Version:

https://daneshyari.com/article/1819320

Daneshyari.com