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a b s t r a c t

We investigate the orientation of the vortex lattice driven by an applied current by means of numerical
simulations based on the time-dependent Ginzburg–Landau (TDGL) theory. A lattice order is restored by
a current driving of vortices under the influence of random vortex pinnings. The orientation of the mov-
ing vortex lattice is different between the presence and the absence of vortex pinnings. We show results
of TDGL simulations for these phenomena.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Much attention has been focused on vortices in type-II super-
conductors under magnetic fields. The vortices are driven into mo-
tion by applying currents. The moving vortices induce the electric
field, and therefore the response of vortices to the applied current
is detected by measuring the electric resistivity. The vortex pin-
nings by defects in materials affect the vortex motion and conse-
quently influence the resistivity. In this way, the vortex and
vortex pinning play an important role for electromagnetic proper-
ties of superconductors.

The vortices tend to form a lattice because of the repulsive
interaction between them. It is known that the vortex pinnings dis-
turb the lattice order in a static state. On the other hand, it has
been discussed that a lattice order is restored by a current driving
of vortices [1–4]. The dynamical lattice formation and deformation
can be studied in a controlled way by applying currents, which
stimulates broad interests in a wide range of science.

Recently, an ordered motion of vortices with small velocity was
observed in a clean superconductor by the scanning tunneling
microscopy [5,6]. A vortex lattice flow was investigated in an
amorphous superconductor by the mode-locking resonance tech-
nique [7,8]. These experiments revealed that the orientation of

the moving vortex lattice depends on the temperature and applied
magnetic field. The lattice vector is perpendicular (parallel) to the
direction of vortex motion in an intermediate-field region (in low-
and high-field regions) in an amorphous superconductor [8]. Here,
the lattice vector indicates the direction of the nearest neighbor
vortex. As discussed later, it is expected that the lattice vector
tends to be parallel to the direction of vortex motion in the absence
of vortex pinnings. Therefore, the above experimental observation
in an amorphous superconductor implies that the vortex pinning
clearly influences the orientation of the moving vortex lattice.

By a molecular-dynamics (MD) simulation and an analytic
study, it was indeed predicted that the lattice vector is perpendic-
ular to the direction of vortex motion in the presence of vortex pin-
nings [9,10]. However, the magnetic-field dependence of the lattice
orientation has not been understood yet. The experiments show
that the vortices seem to move along the lattice vector near the
upper critical field. Since the problem of the field dependence
has still remained unsolved, further theoretical studies are re-
quired. Thus, simulation studies based on the time-dependent
Ginzburg–Landau (TDGL) theory are expected to give a conclusive
answer to the problem.

As a first step, we have performed the TDGL simulations at an
intermediate magnetic field. In this paper, we report that the lat-
tice vector certainly points to the direction perpendicular to the
vortex motion under the influence of a random distribution of vor-
tex pinnings, which is consistent with the experimental observa-
tion. This is the first TDGL simulation aiming to address the
above issue.
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2. Ginzburg–Landau and Maxwell equations

To obtain the time development of the superconducting order
parameter D and vector potential A, we numerically solve the TDGL
equation coupled with the Maxwell one. Those equations are writ-
ten in a dimensionless form as
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Eq. (2) means �jn ¼ js � jt with the normal current jn, supercurrent
js and total current jt , where �jn ¼ �rE ¼ r@A=@t. The scalar poten-
tial is set equal to zero. In Eqs. (1) and (2) Tc is the transition tem-
perature and j is the Ginzburg–Landau (GL) parameter. We shall
introduce the local suppression of TcðrÞ, which acts as vortex
pinning. The order parameter D, time t, vector potential A, and
magnetic field H are normalized by D0; t0 ¼ 8pj2n2

0r=c2;A0

¼ /0=ð2pn0Þ, and H0 ¼ /0=ð2pn2
0Þ, respectively. We have defined

the order parameter D0 and coherence length n0 at zero tempera-
ture, the normal-state longitudinal conductance r, light velocity c,
and flux quantum /0.

We consider a two dimensional system in the xy plane. The
magnetic field Ha is applied perpendicular to the plane. We discret-
ize the system into a grid and use the link variable
Uij

l ¼ exp½�i
R rj

ri
ðAl=A0Þdl=n0�, when solving the TDGL and Maxwell

equations [11–13]. Here, l stands for x or y. The gauge-invariant
differential terms are then replaced as
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with the step size alðl ¼ x; yÞ and the sequential positions i; j; k
along the l coordinate on the grid. The dimensions of a unit cell
of the grid are ax � ay. The magnetic field H is obtained by the
Stokes’ theorem, exp½�i

R
SðH=H0Þ � ndS=n2

0� ¼ exp½�i
R

cðA=A0Þ �dl=n0�,
which can be calculated by using the product of link variables.

In our simulations, the size of the system is Lx � Ly ¼ 50n0

�200n0 with the grid unit n0 � n0. The external current is applied
in the x direction, and a periodic boundary condition is imposed
in this direction. The system edges perpendicular to the y direction
are considered as interfaces between a superconductor and a nor-
mal metal, near which Tc is set to be suppressed as shown in
Fig. 1a. This Tc suppression along the interface assists the vortex
entrance into the system. Thus, the interface does not significantly
affect the dynamical lattice formation. The bulk transition temper-
ature is denoted by Tc0. When investigating the influence of vortex
pinnings, we introduce vortex-pinning sites, each of which is a
point defect where Tc is locally suppressed within the range
0:9 6 Tc=Tc0 6 1. The positions of pinning sites and the degree of
Tc suppression are distributed randomly as shown in Fig. 1b. The
number of pinning sites is 138 in the system 50n0 � 200n0.

The temperature T, applied magnetic field Ha, applied current
density jx, and GL parameter j are set T=Tc0 ¼ 0:5;Ha=H0 ¼ 0:2;
jx=j0 ¼ 3� 10�4 with j0 ¼ /0=ð2pn3

0Þ, and j ¼ 3, respectively. The
applied current in the x direction generates a magnetic-field gradi-
ent in the y direction. Therefore, at the two boundary edges per-

pendicular to the y axis, we set the external fields at the values
consistent with the applied current and the applied magnetic field.
D is set zero at these edges. The minimal time interval is set 0:01t0

when solving the TDGL and Maxwell equations. We continue to
solve the time development of these equations until an ordered
lattice structure is stabilized after a steady vortex motion is
attained.

3. Results

We first consider a system without random vortex pinnings. A
snapshot of moving vortices at a certain moment is shown in
Fig. 2a, where the circles represent the positions of vortices. The
vortices move from the top to the bottom in the negative y-direc-
tion. Another snapshot after the time interval t=t0 ¼ 1000 is pre-
sented in Fig. 2b. Then, the lattice structure of moving vortices is
found to be already stabilized. We confirm that this lattice struc-
ture is unchanged permanently. The simulation result also shows
that the lattice vector is parallel to the direction of vortex motion
as denoted schematically in the lower panel of Fig. 2. Moreover,
we find that this orientation of the vortex lattice is not deter-
mined by an influence of the interface perpendicular to the y axis.
When the applied current is weak, it is expected that an interface
effect appears and the vortices tend to align parallel to the inter-
face along which Tc is suppressed as shown in Fig. 1a. However,
the present result indicates that the vortices align perpendicular
to the interface. Therefore, we conclude that, in the absence of
random vortex pinnings, the moving vortex lattice is always ori-
ented so that the lattice vector is parallel to the direction of
motion.

On the other hand, when the applied current becomes substan-
tially large, the moving lattice is destroyed by spontaneous nucle-
ation of dislocations. A large field gradient due to a large applied
current results in a significant spatial gradient of the density of
vortices, by which dislocations of the vortex lattice are generated.
Our result concerning the dislocations nucleation is consistent
with the previous simulation study [4].

Next, we consider a vortex lattice flow under the influence of
random vortex pinnings. The collective flow is simulated in this
paper, while the plastic flow has been studied by another TDGL
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Fig. 1. (a) Spatical profile of the transition temperature TcðrÞ normalized by the
bulk transition temperature Tc0. (b) Distribution of random vortex pinnings used in
the present simulations. The region of 50n0 � 100n0 is displayed, which is a part of
the system 50n0 � 200n0.
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