Physica C 469 (2009) 1157-1160

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Effects of RE_2O_3 (RE = Tm, Sc, Yb) addition on the superconducting properties of $ErBa_2Cu_3O_y$

R. Kita^{a,*}, N. Hosoya^a, N. Otawa^a, S. Kawabata^a, T. Nakamura^a, O. Miura^b, M. Mukaida^c, K. Yamada^c, A. Ichinose^d, K. Matsumoto^e, M.S. Horii^f, Y. Yoshida^g

^a Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan

^b Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0364, Japan

^c Kyushu University, Hakozaki 6-10-1, Higashi-ku 4-3-16, Fukuoka 992-8510, Japan

^d CRIEPI, Nagasaka 2-6-1, Yokohama, Kanagawa 240-0916, Japan

^e Kyusyu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan

^fKochi University of Technology, Kami-shi, Kochi 782-8502, Japan

^g Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

ARTICLE INFO

Article history: Accepted 22 January 2009 Available online 30 May 2009

PACS: 74.72.Dn 74.72.lt

Keywords: RE₂O₃ Tm₂O₃ Sc₂O₃ Yb₂O₃ Artificial pinning center

ABSTRACT

We investigated the effects of added Tm_2O_3 , Sc_2O_3 , and Yb_2O_3 on the superconducting properties of sintered Er123 samples. Tm_2O_3 addition caused the least T_c degradation, exhibiting a T_c above 90 K even for 17 vol% addition. Samples with added Sc_2O_3 maintained a T_c at above 90 K up to an addition of 7.2 vol%, while Yb_2O_3 -containing samples showed a monotonic decrease in T_c with increased vol% of added Yb_2O_3 . Tm_2O_3 -containing samples exhibited a slight increase in $J_c(0.1 T)/J_c(0)$ and had constant J_c values even for 17 vol% addition. XRD and SEM results indicate that the Tm_2O_3 is very stable in the superconducting matrix.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Improvement of the critical current density (J_c) of REBa₂Cu₃O_y (RE123) superconductors is essential for the application of RE123 superconducting melt-textured bulk and thin films to high-performance permanent magnets or high-current-carrying wires. Introduction of artificial pinning centers (APC) into RE123 superconducting phases is a very effective technique for enhancing J_c . Significant improvements in J_c have been reported for melt-textured REBCO by adding RE₂BaCuO₅ (RE211) [1], Y₂Ba₄CuMO_y [2], ZrO₂ [3], barium oxides (BaZrO₃ [3], BaCeO₃ [4], or BaSnO₃ [5]) to create APCs. For RE123 thin films, the J_c -B properties were also enhanced significantly by the introduction of nanometer-sized rod-shaped barium oxide into superconducting matrices [6–9]. Recently, we reported a good correlation between the stability of barium oxides in RE123 films and sintered compounds [10]. This suggests that the study of the addition of various materials into

E-mail address: terkita@ipc.shizuoka.ac.jp (R. Kita).

sintered samples will be of great help in the search for new APC materials suitable for high- J_c thin films in high-magnetic fields. RE₂O₃ is known to have high thermal stability and to be relatively chemically inert. However, there are few reports on the stability of RE₂O₃ in the superconducting phase [11].

In the present study, we have investigated the effects of Tm_2O_3 , Sc_2O_3 and Yb_2O_3 additions on the superconducting properties of Er123 and compared their stability in the RE123 matrix.

2. Experimental

Er123 samples were prepared from Er_2O_3 (99.9%), BaCO₃ (99.95%), and CuO (99.99%) using a standard solid-phase reaction technique. Appropriate amounts of the reagents were thoroughly ground and calcined at 1173 K for two periods of 12 h in air, with intermediate regrinding. The resultant Er123 powder was pressed into pellets and sintered at 1233 K in air for two periods of 12 h, with intermediate regrinding. High-purity (99.9%) Tm_2O_3 , Sc_2O_3 , and Yb_2O_3 powders were then added to the pulverized Er123 pellets in concentrations of 1–17 vol%. The resulting powders were

^{*} Corresponding author. Tel./fax: +81 53 478 1129.

^{0921-4534/\$ -} see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2009.01.020

thoroughly ground, pressed into pellets and then sintered at 1233 K in air for 12 h. All samples were subsequently annealed in flowing oxygen at 1183 K for 12 h, cooled to 773 K with a 12 h stay, then cooled to room temperature in a furnace. The electrical resis-

Fig. 1. Dependence of T_c on the amount of RE₂O₃ added to ErBCO sintered samples.

tivity of the samples was measured by a standard four-probe technique to determine their critical temperatures (T_c). J_c of the samples at 77 K was calculated from *B*–*M* curves measured by a superconducting quantum interference device (SQUID) at magnetic fields of 0–1.0 T. X-ray diffractometry (XRD) was employed to identify the phases present in the samples and determine lattice constants. The sample surfaces were characterized using a scanning electron microscope (SEM). The chemical compositions of the precipitates on the sample surfaces were determined by energy-dispersive X-ray spectroscopy (EDX).

3. Results and discussion

The T_c of the RE₂O₃-containing Er123 sintered samples are shown as a function of the amount added in Fig. 1. Samples with Tm₂O₃ added showed the least degradation of T_c , and maintained T_c above 90 K even for 17.3 vol% addition. Maintaining high- T_c is comparable to BaSnO₃ with high stability in the superconducting phase [10]. Sc₂O₃-containing samples maintained a T_c above 90 K up to 7.2 vol% added, but showed degradation of T_c above 10 vol% added. Yb₂O₃-containing samples showed a monotonic decrease in T_c with increasing Yb₂O₃ content. These results indicate that Tm₂O₃ oxides are relatively stable in the superconducting matrix.

Fig. 2. XRD θ -2 θ spectra for (a) Tm₂O₃, (b) Sc₂O₃, and (c) Yb₂O₃-containing ErBCO sintered samples.

Fig. 3. Lattice constants of the RE₂O₃-containing samples calculated from the XRD patterns as a function of the amount of RE₂O₃ added.

Download English Version:

https://daneshyari.com/en/article/1819375

Download Persian Version:

https://daneshyari.com/article/1819375

Daneshyari.com