

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Neutron diffraction study of Nd-substituted FeSr $_2$ YCu $_2$ O $_{6+\delta}$ magnetic superconductor

T. Mochiku a,b,*, T. Wuernisha b,1, Y. Hata c, A. Hoshikawa d,1, H. Fujii a, H. Yasuoka c, K. Hirata a

- ^a Superconducting Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- ^b Quantum Beam Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- ^c Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
- ^d J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195, Japan

ARTICLE INFO

Article history: Available online 21 May 2008

PACS: 74.62.Bf 74.72.Bk

Keywords: FeSr₂YCu₂O_{6+δ} Nd substitution Neutron powder diffraction Disorder

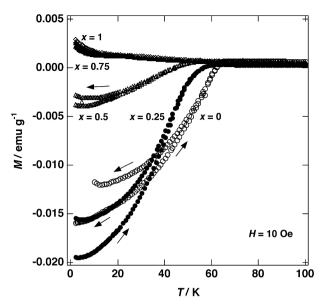
ABSTRACT

FeSr $_2$ YCu $_2$ O $_{6+\delta}$ with tetragonal Ba $_2$ YCu $_3$ O $_{6+\delta}$ -type structure exhibits superconductivity around 60 K, only when it is annealed in reduced atmosphere and subsequently in oxidized atmosphere. However, FeSr $_2$ NdCu $_2$ O $_{6+\delta}$ with the substitution of lanthanoid with large ionic radius for Y do not exhibit superconductivity even if it is annealed in the same process as superconducting FeSr $_2$ YCu $_2$ O $_{6+\delta}$. We have performed neutron powder diffraction of the FeSr $_2$ Y1 $_{-x}$ Nd $_x$ Cu $_2$ O $_{6+\delta}$ solid solution system to investigate the effect of the Nd substitution on structure and superconductivity. The structure analysis indicates that the disorder of Sr and Nd, of oxygen on double superconducting CuO $_2$ sheets and of Cu and Fe prevents exhibiting superconductivity in the Nd-substituted system.

© 2008 Elsevier B.V. All rights reserved.

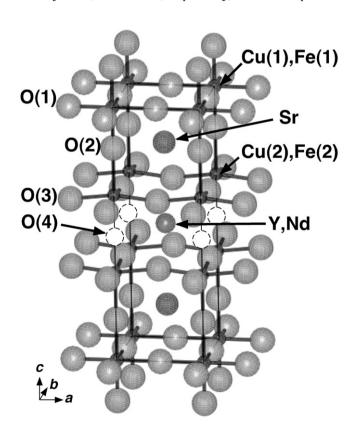
1. Introduction

Coexistence of superconductivity and ferromagnetism has been discovered in RuSr₂GdCu₂O₈ with the substitution of the RuO₆ octahedron for the CuO_{δ} chain in the $Ba_2YCu_3O_{6+\delta}$ -type high- T_c superconductor, which exhibits superconductivity at 16 K and ferromagnetic order of Ru at 133 K by the careful sample preparation process [1]. Meanwhile, $FeSr_2YCu_2O_{6+\delta}$ is known as the Ba_2Y -Cu₃O_{6+δ}-related compound with the substitution of the oxygendeficient FeO_{4+ δ} octahedron with the magnetic transition element Fe for the CuO_{δ} chain [2,3]. Although FeSr₂YCu₂O_{6+ δ} was expected to exhibit superconductivity as $Ba_2YCu3O_{6+\delta}$, as-sintered $FeSr_2Y$ - $Cu_2O_{6+\delta}$ compound did not exhibit superconductivity due to the substitution of Fe on the superconducting CuO₂ sheets. However, FeSr₂YCu₂O_{6+ δ} exhibits superconductivity around 60 K, only when it is properly annealed in N2 atmosphere and subsequently in O2 atmosphere [4]. Neutron powder diffraction study indicated that the N₂-annealing causes order of Cu and Fe atoms to prevent the substitution of Fe on the CuO2 sheets, and that the O2-annealing supplied enough carrier on the CuO2 sheets to exhibit superconductivity [5]. Although other lanthanoid elements (Nd, Sm, Eu, Gd, Dy, Ho, Er and Tm) can be substituted for Y in FeSr₂YCu₂O_{6+δ} like Ba₂YCu₃O_{6+δ}, FeSr₂NdCu₂O_{6+δ} and FeSr₂SmCu₂O_{6+δ} do not exhibit superconductivity and FeSr₂EuCu₂O_{6+δ} exhibit superconductivity at lower temperature than T_c of FeSr₂YCu₂O_{6+ δ}, even if those are annealed along the same process as superconducting FeSr2Y- $Cu_2O_{6+\delta}$ [6]. Those indicate that the ionic size at the Y site is effective on superconductivity unlike $Ba_2YCu_3O_{6+\delta}$. Since the change of the ionic size at the Y site affects the crystal structure including the oxygen site, we need to analyze the detailed crystal structure with neutron powder diffraction. However, we cannot use neutron powder diffraction for FeSr₂SmCu₂O_{6+δ} and FeSr₂EuCu₂O_{6+δ} because of extremely strong absorption of neutron by Sm and Eu. To investigate the structural effect of the lanthanoid substitution on superconductivity, we have performed the neutron powder diffraction study of the FeSr₂Y_{1-x}Nd_xCu₂O_{6+δ} solid solution system, which ionic size at the Y site varies systematically.


2. Experimental

The $\text{FeSr}_2\text{Y}_{1-x}\text{Nd}_x\text{Cu}_2\text{O}_{6+\delta}$ samples (x = 0, 0.25, 0.5, 0.75 and 1) were prepared by the solid-state reaction of stoichiometric mixtures of Fe_2O_3 , SrCO_3 , Y_2O_3 , Nd_2O_3 and CuO powders. The same process was performed to all samples as follows, to prepare the

^{*} Corresponding author. Address: Superconducting Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan. Tel.: +81 29 859 2320; fax: +81 29 859 2301.


E-mail address: mochiku.takashi@nims.go.jp (T. Mochiku).

¹ Present address: Frontier Research Center for Applied Nuclear Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.

Fig. 1. Temperature dependence of the DC magnetization in magnetic field of 10 Oe for the oxidized $FeSr_2Y_{1-x}Nd_xCu_2O_{6+\delta}$ samples (x = 0, 0.25, 0.5, 0.75 and 1).

samples with fixed oxygen content, $6 + \delta$. The mixtures were sintered at $1000\,^{\circ}\text{C}$ for $12\,\text{h}$ in air, ground and then pressed into pellets. The pellets were sintered at $1000\,^{\circ}\text{C}$ for $12\,\text{h}$ in air. The as-sintered samples were subsequently annealed at $700\,^{\circ}\text{C}$ for $12\,\text{h}$ in a nitrogen flow, at $300\,^{\circ}\text{C}$ for $24\,\text{h}$ in an oxygen flow, and finally oxidized at $350\,^{\circ}\text{C}$ for $24\,\text{h}$ in high oxygen pressure of $20\,\text{MPa}$. Fig. 1 shows the temperature dependence of the DC magnetization for the $\text{FeSr}_2\text{Y}_{1-x}\text{Nd}_x\text{Cu}_2\text{O}_{6+\delta}$ samples $(x=0,\ 0.25,\ 0.5,\ 0.75\ \text{and}\ 1)$. The samples with $x=0,\ 0.25\ \text{and}\ 0.5$ exhibit superconductivity at $65,\ 60$ and $55\,\text{K}$, respectively, and the samples with

Fig. 2. Crystal structure of FeSr₂Y_{1-x}Nd_xCu₂O_{6+δ}.

Table 1 Atomic coordinates of the tetragonal $Ba_2YCu_3O_{6+\delta}$ -type structure model with the space group P4/mmm

Atom	Site	x	y	z
Sr	2h	1/2	1/2	z
$Y_{1-x}Nd_x$	1d	1/2	1/2	1/2
Cu(1), Fe(1)	1a	0	0	0
Cu(2), Fe(2)	2g	0	0	Z
O(1)	2f	0	1/2	0
0(2)	2g	0	0	Z
O(3)	4i	0	1/2	Z
Split oxygen site				
O(1)	4n	x	1/2	0
O(2)	8r	x	x	Z
Extra oxygen site				
O(4)	1b	0	0	1/2

x = 0.75 and 1 do not exhibit superconductivity. This indicates that the Nd substitution depresses the $T_{\rm c}$ value.

Neutron powder diffraction data for all samples were taken with a high-resolution neutron powder diffractometer, HRPD, at the JRR-3 research reactor in the Japan Atomic Energy Agency. The intensity data were collected at room temperature and the crystal structure of the samples was refined with the Rietveld refinement program, RIETAN-2000 [7], on the basis of the tetragonal ${\rm Ba_2YCu_3O_{6+\delta^-}}$ -type structure with the space group ${\it P4/mmm.}$ Fig. 2 shows the crystal structure and Table 1 shows the atomic coordinates of the structure model. Since mutual substitution of Cu and Fe is analyzed, four sites are assigned for Cu and Fe: 1a site for Cu(1) and Fe(1) and 2g site for Cu(2) and Fe(2), and those occupation factors, g, have the linear constrains

$$\begin{split} g_{\text{Fe}(1)} &= 1 {-} g_{\text{Cu}(1)}, \\ g_{\text{Cu}(2)} &= 1 {-} 0.5 \, g_{\text{Cu}(1)}, \\ g_{\text{Fe}(2)} &= 0.5 \, g_{\text{Cu}(1)}. \end{split}$$

3. Results and discussion

Table 2 lists the final R factors, the lattice and structure parameters and their standard deviation. Fig. 3 illustrates typical one of the Rietveld refinement patterns of the FeSr₂Y_{1-x}Nd_xCu₂O_{6+ δ} samples. The structure model is supported by the good fit between the

Table 2 Final results of the Rietveld refinements for $FeSr_2Y_{1-x}Nd_xCu_2O_{6+\delta}$ (tetragonal, P4/mmm, Z=1)

х	0	0.25	0.5	0.75	1
R _{wp}	7.01%	6.50%	6.43%	8.70%	7.07%
S	1.35	1.29	1.28	1.33	1.27
a (nm)	0.38169(1)	0.38307(1)	0.38307(1)	0.38420(1)	0.38435(1)
c (nm)	1.13546(2)	1.13884(3)	1.13886(3)	1.14133(2)	1.14623(2)
$g_{Cu(1)}$	0.16(3)	0.10(4)	0.11(4)	0.09(4)	0.38(5)
g _{Cu(2)}	0.92(2)	0.95(2)	0.94(2)	0.96(2)	0.81(3)
g _{O(1)}	0.404(6)	0.402(6)	0.401(6)	0.389(7)	0.400(7)
$x_{O(1)}$	0.076(1)	0.077(1)	0.076(1)	0.069(2)	0.063(2)
X _{O(2)}	0.0	0.0	0.0	0.0	0.037(2)
$B_{O(2)} (nm^2)$	0.0131(5)	0.0167(6)	0.0165(2)	0.0185(7)	0.0163(12)
$B_{O(3)} (nm^2)$	0.0068(4)	0.0128(4)	0.0126(4)	0.0131(5)	0.0257(6)
g _{O(4)}	0	0.081(9)	0.083(9)	0.153(10)	0.354(11)
g _{Sr(1)}	1.0	0.941(10)	0.898(7)	0.876(14)	0.803(9)
g _{Sr(2)}	0.0	0.118(20)	0.204(14)	0.248(28)	0.394(18)

g is the occupation factors. B is the isotropic atomic displacement parameter in nm². Numbers in parentheses are estimated standard deviations of the last significant digit, and those without deviations were fixed. $g_{Sr(1)}$ and $g_{Sr(2)}$ were refined from X-ray powder diffraction data, where four sites are assigned for Sr and Nd: 2h site for Sr(1) and Nd(1) and 1d site for Sr(2) and Nd(2).

Download English Version:

https://daneshyari.com/en/article/1819496

Download Persian Version:

https://daneshyari.com/article/1819496

<u>Daneshyari.com</u>