Physica C 468 (2008) 1287-1290

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

P.M. Shirage^a, A. Iyo^{a,*}, D.D. Shivagan^a, A. Crisan^{a,b,c}, Y. Tanaka^a, Y. Kodama^a, H. Kito^a

^a National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
^b National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest, Romania
^c Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK

ARTICLE INFO

Article history: Available online 23 May 2008

PACS: 74.72.Jt 74.25.Qt 74.25.Op 74.25.Sv

Keywords: Hg-based superconductor Critical current density Irreversibility field Pinning force

ABSTRACT

A recent report on multilayered superconductors establishes unique constant T_c although the number of inner CuO₂ plane (IP) increases. Many hypotheses proposed that the irreversibility field (B_{irr}) and critical current density (J_c) are depends on the crystal structures. We have measured the J_c and B_{irr} of the HgBa₂-Ca_{n-1}Cu_nO_{2n+2+δ} sample containing n = 6-15 phases to investigate the effect of the number of IP's on the B_{irr} and J_c and its pinning properties. The rate of fall of J_c increases and irreversible lines (IL's) shift to lower temperatures with increasing the number of IP's, which suggests that anisotropy increases with n. The IL settled in between those for Bi₂Sr₂CaCu₂O_y with high anisotropy value and YBa₂Cu₃O₇ with less anisotropy value. The double logarithmic plot of irreversibility field versus $[1 - (T/T_c)]$ analysis suggests that the flux line melting model is adopted. The flux pinning force density F_p ($\approx J_cB$) exhibits scaling behavior when the magnetic field *B* is normalized by the irreversibility field B_{irr} . Analysis of the normalized pinning force reveals that a surface pinning mechanism is dominant and reduced magnetic field $b_{max} = 0.2$ agree with surface pinning mechanism with closely spaced pins.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Multilavered (ML) cuprates admit two or more crystallographically inequivalent CuO₂ planes in a unit cell: outer planes (OP) with pyramidal (five) oxygen coordination and inner planes with square (four) oxygen coordination. Multilayered cuprates are generally depicted by the formula, $MCa_{n-1}Cu_nO_{2n}$, where M is a charge reservoir layer (CRL) such as $HgBa_2O_{\nu}$, $Bi_2Sr_2O_{\nu}$, $Tl_2Ba_2O_{\nu}$, $Ba(O,F)_{\nu}$ etc. The $Ca_{n-1}Cu_nO_{2n}$ has an infinite layer structure and *n* means the number of CuO₂ planes between the CRL. Multilayered high- T_c cuprates, which have more than three CuO₂ planes in a unit cell, demonstrate peculiar properties because of the two types of CuO₂ planes. Evidence for the coexistent phase of superconductivity and antiferromagnetism in a unit cell has been obtained in the five-layered high- T_c superconductor HgBa₂Ca₄Cu₅O_{12+ δ} [1–3]. Also our recent investigations have proposed a T_c versus *n* relationship for multilayered high- T_c superconductors, in which the T_c is almost constant above about n = 5 [4]. We explained the characteristic relationship between T_c versus *n* using the carrier imbalance model in multilayered cuprates shown by NMR measurements [5]. The OP can have enough carriers for superconductivity for large *n* even if the number of carriers in IP becomes too small to induce superconductivity.

The B_{irr} and J_c of the samples should be influenced by the *n* even though that the samples have the same T_c , because a coupling between the OP's is expected to be weak with increasing the number of IP's. To know the J_c and B_{irr} for large *n*, we used the HgBa₂-Ca_{n-1}Cu_nO_{2n+2+ δ} (Hg-12(*n* - 1)*n*) sample containing *n* = 6–15 phases because we have not succeeded in synthesizing single-phase samples for $n \ge 7$. In this report, the J_c and B_{irr} properties of the sample will be shown and compared with other superconductors.

2. Experimental

The multilayered (ML) cuprates are normally synthesized under a pressure of several GPa [6]. The details of the preparation for polycrystalline HgBa₂Ca_{n-1}Cu_nO_{2n+2+δ} sample with a nominal composition of n = 10 (Hg-12910) have been reported elsewhere [4]. For grain alignment, the polycrystalline sample was ground to a powder with average grain size 2–3 µm, mixed with an epoxy resin in a sample powder: epoxy resin = 1:3 weight ratio, and kept for 12 h in a high magnetic field of 7 T at room temperature. Our samples consist of a collection of single crystals embedded into a cylindrical epoxy, all crystals having the *c*-axis parallel to the applied

^{*} Corresponding author. Tel.: +81 29 861 5435; fax: +81 29 861 5447.

E-mail addresses: paras-shirage@aist.go.jp (P.M. Shirage), iyo-akira@aist.go.jp (A. Iyo).

^{0921-4534/\$ -} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2008.05.049

field. In present study, the aligned sample and polycrystalline single-phase samples of n = 4 and 5 are used. The aligned and polycrystalline samples were characterized by powder X-ray diffraction (RINT 1100, Rigaku). Magnetic susceptibility (MPMS, Quantum Design) was measured by the field cooling method. Measurements of the isothermal magnetization M(H) were made for a set of temperatures (T) from 5 to 100 K. From the DC magnetization hysteresis loops, we determined the intragrain J_c and B_{irrr} (criterion 1000 A/cm²) using Bean's critical state model, $J_c = 30 \Delta M/d$, where ' ΔM ' is the magnetization determined from M-H loops, 'd' is the grain size in polycrystalline samples.

3. Results

Fig. 1 shows the XRD pattern of the aligned Hg-12910 sample. Most peaks could be indexed as only (00*l*) peaks. The XRD pattern shows the coexistence of the n = 6-15 phases of Hg-12(n - 1)n. Fig. 2 shows the temperature dependence of susceptibility of the Hg-12910 sample. The sample showed a high and sharp superconducting transition at temperature 103 K. This means that all the coexistent phases in the sample have the same T_c values, otherwise a lot of transitions would have been observed.

Fig. 3 shows the field dependence of J_c observed at various temperatures for the Hg-12910 sample. Although the J_c values are fairly high and only weakly dependent on the magnetic field at low temperatures, a rapid falling off with increasing field was observed above 30 K. Hence, strong pinning at high temperatures as observed in YBa₂Cu₃O₇ (Cu-1212) superconductors, seems not to be observed in the Hg-12910 sample. The I_c declines precipitously with magnetic field at moderate temperatures (>30 K) because of the weak flux pinning. The variation in the I_c values estimated at 1 T for n = 4, 5 and 10, plotted as the $J_c(T)/J_c(0)$ versus temperature are shown in Fig. 4. The I_c can be approximated to the temperature dependence of $J_c(T) = J_c(0) \exp(-T/T_0)$ where T_0 is a fitting parameter and provides a rough measure of the decaying speed of J_c with increasing temperature. The fitting parameter T_0 prevailed for the n = 10 was 5 K while for n = 4 and 5 are 9.5 K and 20 K, respectively. The shift of T_0 values at low temperatures with the increase in number of CuO_2 layers in a unit cell and sudden fall of J_c value with applied magnetic field suggest the increase in the anisotropy value. The T_0 values for the optimal doped other cuprates superconduc-

Fig. 1. X-ray diffraction pattern of the aligned HgBa₂Ca_{*n*-1}Cu_{*n*}O_{2*n*+2+δ} sample with nominal composition of *n* = 10 (Hg-12910). Inset shows the selected range from $2\theta = 28^{\circ}$ to 36°. All the peaks are assigned to (00*l*) indices from *n* = 6–15 phases as shown by numbers in the inset. The sample simultaneously contains *n* = 6–15 phases.

Fig. 2. Temperature dependence of the susceptibility for $HgBa_2Ca_{n-1}Cu_nO_{2n+2+\delta}$ with nominal composition of n = 10 (Hg-12910). Although the sample contains n = 6-15 phases, a one-step superconducting transition is observed at a temperature of 103 K.

Fig. 3. Field dependence of J_c of HgBa₂Ca_{*n*-1}Cu_{*n*}O_{2*n*+2+ δ} with nominal composition of n = 10 (Hg-12910) at various temperatures. The sample contains n = 6-15 phases.

tors are reported previously; such as $T_0 = 14-23$ K for (Cu, C)Ba₂Ca₃-Cu₄O_y ((Cu, C)-1234) [7–9], $T_0 = 7$ K for Hg-1201 [10], $T_0 = 4-5$ K for Bi₂Sr₂CaCu₂O_y (Bi-2212) [11]. In the present investigation the T_0 values of the Hg-12910 sample is established same as Bi-2212, but lower than (Cu, C)-1234. While for the n = 4 and 5, the T_0 values are higher than Bi-2212 but lower than Cu-1212. This proposes that the Hg-12910 pretends like highly anisotropic system like Bi-2212.

Numerous experiments probing the mixed state of cuprate superconductors have been established, the presence of a boundary in the magnetic phase diagram which separates a magnetically irreversible, zero resistance state from a reversible state with dissipative electrical transport properties [12–16]. This boundary has been suggested to be due to either depinning [13,17], to a vortex-glass formation [18], or to the flux-lattice melting [19]. The temperature dependence of IL of Hg-12(n - 1)n (n = 4, 5 and 10), Bi-2212 and Cu-1212 are shown in Fig. 5. It is clear that the n = 4, 5 and 10 samples have a steeper IL's and, therefore, a large irreversibility regions in B-T plane than those of Bi-2212 sample.

Download English Version:

https://daneshyari.com/en/article/1819526

Download Persian Version:

https://daneshyari.com/article/1819526

Daneshyari.com