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We transform the quartic Hubbard terms in the extended Hubbard model to a quadratic form by making
the Hubbard-Stratonovich transformation for the electron operators. This transformation allows us to
derive exact results for mass operator and charge-charge and spin-spin correlation functions for s-wave
superconductivity. We discuss the application of the method to the d-wave superconductivity.
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1. Introduction

The Hubbard model predicts phase instabilities which give rise
to a divergence of the charge and spin correlation functions, and
therefore, it has been the focus of particular interest as a model
for high-temperature superconductivity. The Hamiltonian of the
standard Hubbard model contains only two terms representing
the hopping of electrons between sites of the lattice and their
on-site interaction. If the interaction between electrons on differ-
ent sites of the lattice is included, the model is referred as the ex-
tended Hubbard model.

In what follows we study the following Hamiltonian:

H= _Zij Wie — ﬂzﬁi.a + Uzﬁi.Tﬁu -V Z lighie, (1)
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where y is the chemical potential. The Fermi operator y/!  (i;,,) cre-
ates (destroys) a fermion on the lattice site i with spin projection
o =7, | along a specified direction, and f;, = 1//'1."_0%_0 is the density
operator on-site i. The symbol }° ;;, means sum over nearest-neigh-
bor sites. The first term in (1) is the usual kinetic energy term in a
tight-binding approximation, where t; is the single-electron hop-
ping integral. Depending on the sign of U, the third term describes
the on-site repulsive or attractive interaction between electrons
with opposite spins. We assume that V > 0, so the last term is ex-
pect to stabilize the pairing by bringing in a nearest-neighbor
attractive interaction. The lattice spacing is assumed to be a =1
and the total number of sites is N.
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The simplest method to study the possibility for the extended
Hubbard model to show a superconducting instability is to apply
mean-field analysis of pairing followed by general random phase
approximation (GRPA) [1,2]. Going beyond the GRPA requires reli-
able approximation schemes to handle self-consistent relations be-
tween single- and two-particle quantities: the mass operator X
depends on the two-particle Green function K, and the kernel of
the Bethe-Salpeter (BS) equation 6X/6G for the spectrum of the
collective excitations itself does depend on the mass operator. A
possible approximation to this problem is the so-called two-parti-
cle self-consistent (TPSC) approach [3-15]. The TPSC approach is a
method for closing the set of equations for single-particle mass
operator and the two-body density matrix operator. The later can
be factorized by introducing the so-called equal-time pair-correla-
tion function g, (i,j) [12,13] which itself depends on the density-
density correlation function. In other words, the TPSC approach
goes beyond the GRPA for single-particle mass operator by estab-
lishing a self-consistency relation between single-particle and
two-particle quantities. By setting g, (i,j) = 1 one should recover
the GRPA results for the mass operator and charge and spin corre-
lation functions.

In what follows, we first obtain exact formulas for the electron
self-energy (electron mass operator), the charge and spin correla-
tion functions. We also briefly discuss how our approach could
be generalized in order to include d-wave instabilities of the types
examined in Refs. [16-20].

2. Field-theoretical approach to extended Hubbard model

The interaction part of the Hamiltonian (1) is quartic in the
Grassmann fermion fields so the functional integrals cannot be
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evaluated exactly. However, it is convenient to transform the
quartic Hubbard terms in (1) to a quadratic form by making
the Hubbard-Stratonovich transformation for the electron
operators:

[ it exp [b) 0 y:xi2)i (2]
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The symbol “hat” over any quantity O means that this quantity
is a matrix. The functional measure Dy A] is chosen to be:

e

The Hubbard-Stratonovich transformation converts the quartic
problem of interacting electrons to the more tractable quadratic
problem of non-interacting Nambu fermion fields

UA] = DAe¥'*®@ Dy (22)Ap(Z
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coupled to a Bose field A, (z) where o =T, | is the spin degree of free-
dom which reflects the spin-dependent nature of the Hubbard
interaction. The bare boson propagator in (2) provides an instanta-
neous spin-dependent interaction, and in accordance with the
Hamiltonian (1), it should have the following form:
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Here o is complimentary of «, and V(K) = 4V (cosky + cosk,) is the
nearest-neighbor interaction in momentum space. The symbol V ,
is equal to V if j and j' sites are nearest neighbors, and zero other-
wise. We have used composite variables y = {r;,u} = {i,u}, x =
rpuy={lu}, z={r,v}={,v} and Z={r,v}={, v}
where 1;, 1y, 1; and r; are the lattice site vectors. The symbol
2w, is used to denote [3‘121,. For boson fields we have w, = 21/
Ap; p=0,£1,+£2,....

After performing the Hubbard-Stratonovich transformation, the
action of the system becomes

S SO LS g, (4)

where
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The inverse Green function of free electrons G©-(y;x) is diag-
onal with respect to the spin indices and has its usual form:
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where G (K,10m) = [om — (€(k) — )] ', and G
[t + (e(k) — )] ™', Here €(K) = —2t(cosky + cosk,) — 4t' cosk,
cosk, is the non-interacting dispersion on a square lattice, u is
the electron chemical potential, and the symbol )~ is used to de-

(K, 10p) =

note p'Y,. For fermion fields we have wy, = (27/f)(m+
1/2); m=0,1,2,...
The bare vertex I'{" (y;x|z) is a 2 x 2 matrix defined as follows:
TO(y;xjz) = (Fff)(w,y; X2 ° ) :
0 rY(Ly; 1,xz)
r'%a,y;o,xz) = I'(c,i,u; 0,7, u|i", v)
=0(U—v)o(U— U540 9)

Since the electrons polarize the boson field, and the boson field
acts onto the electrons, our approach describes the correlated mo-
tion of the electrons and the surrounding polarization field.

In field theory the expectation value of a general operator 5(u)
is expressed as a functional integral over the boson field A and the
Grassmann fermion fields  and v

(TuOW) = 5371 [ DR, ADW) x exp @4,(2)
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where the symbol (...) means that the thermodynamic average is
made, and T, is an u-ordering operator. J, M are the sources of
the boson and fermion fields, respectively. The functional Z[J, M] is
defined by

VAIRYI Z/DMW 1// Alel~@A WM (yX)wm]? (11)
where the functional measure Du[y, , A] = DADyDy exp(S) satis-
fies the condition [Dufy,,A] = 1.

It is convenient to introduce complex indices 1= {o1,x:1},
2=1{02,¥,},..., where, o12={1,1} and x; ={r,,u;}, and
¥y, = {ry,uz}. We define a functional derivative §/6M(1;2), and
depending on the spin degrees of freedom ¢; and a5, there are four
possible derivatives:

o 0
M(TayZ;T7X1)7 M(TvyZ;ivxl),
0 1

6M(l7y2;T>X1)7 5M(lvy2;ivxl).

The reason to write the expectation value (10) as a functional
integral is that all Green functions related to system under consid-
eration can be expressed in terms of the functional derivatives of
the generating functional of the connected Green functions
W[J,M] = InZ[J, M]. By means of the functional W[J, M|, we define
the following Green and vertex functions of the extended Hubbard
model.

Boson Green function:

*w
9,(2)3]4(z)

The single-electron Green function G(1;2) =
the Hubbard model assumes the form:

Dy(z,2) = — (12)
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