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Abstract

We extend the doublon–holon binding wave function, which was recently often used to consider Mott transitions and dx2�y2 -wave
superconductivity, for the half-filled-band Hubbard model on square lattices with the diagonal hopping t 0. We introduce two new fea-
tures: (1) In the doublon–holon binding factor, more accurate configuration correlations are included. (2) The band renormalization
effect owing to the electron correlation is introduced within the third-neighbor hopping, including the anisotropy between x- and y-direc-
tions in the nearest-neighbor hopping. Using an optimization variational Monte Carlo technique, we draw some definite answers to the
topics concerning the above features.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

To study strongly-correlated electron systems like the
cuprate superconductors, the optimization variational
Monte Carlo (VMC) method is quite effective, because it
can treat the local correlation accurately. To the Hubbard
model, the famous Gutzwiller (on-site) projector PG [1] has
been applied for long time, and yielded some useful results.
However, it was revealed that the single use of PG some-
times leads to unphysical results [2,3]. Particularly at half
filling, PG cannot describe a Mott transition. Thanks to
the recent rapid progress in optimization techniques for
multiparameters in VMC calculations [4], the improved
wave functions we propose have been practically feasible.
By adopting a doublon–holon binding factor PQ [5] in
addition to PG, Mott transitions were successfully under-

stood within the variation theory [6]. In contrast to the
Brinkman-Rice transition [7], this transition is the first-
order, and in the insulating regime the energy behaves as
/ � t2/U, which is desirable in the strong-coupling theory.
Furthermore, it was found that robust superconductivity
(SC) occurs immediately below the Mott critical point Uc

[8], if antiferromagnetism (AF) is excluded by some means.
In this study, we extend the wave function used in the

previous study [8] for the two-dimensional Hubbard model
with next-nearest-neighbor transfer, and solve it accurately
using the optimization VMC method. Two features are
newly introduced into the wave function: (1) In the doub-
lon–holon binding factor, more accurate configuration cor-
relations are considered. (2) Band renormalization effect
owing to the electron correlation is considered within the
third-neighbor hopping including the anisotropy between
x- and y-directions in the nearest-neighbor hopping. Con-
sequently, it is found that the doublon–multiholon binding
is less advantageous than the doublon-to-single-holon
binding. In the quasi-Fermi surface (effective Fermi surface
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of the renormalized band), the nesting condition is almost
recovered in the insulating regime, and the anisotropy
between x- and y-directions cannot be detected.

2. Method

We consider the Hubbard model on a square lattice with
the next-nearest-neighbor transfer t 0,
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In the following, we concentrate on the case of half-filled
band (n = Ne/Ns = 1; Ne: electron number and Ns = L · L:
site number), and t 0/t = �0.4; we adopt a somewhat large
magnitude of t 0 for cuprate SC to emphasize the effect of
frustration. Here, we chiefly consider the U/t dependence
of ground-state properties. We use t as the unit of energy
in the following.

To this model, we apply an optimization VMC method
[4] that can correctly treat the local correlation in the whole
range of U/t. As a variational wave function, we use a pro-
jected BCS state with d-wave pairing symmetry:

Wd ¼ PQPGUd; ð3Þ

where PG is the famous Gutzwiller (on-site) projector,
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and jcihcj is a projection operator to extract the configura-
tion c. We extend the doublon–holon binding factor PQ as
follows:

PQ ¼
Y
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where j"#i,ne,‘i represents a doubly occupied state at the
site i with ne empty sites (holons) in the four ‘-th nearest
neighbors, and j0i,nd,‘i an empty state with nd doubly-occu-
pied sites (doublons) in the four ‘-th nearest neighbors.
Thus, ne, nd = 0, 1, 2, 3 or 4. The variational parameter

qc controls the probability weight of the configuration c,
as shown in Fig. 1a. For example, q3 with ‘ = 2 indicates
the probability weight of the doublon (holon) site with
three holon (doublon) sites in the four next–nearest–neigh-
bors. Because at half filling the relation between a doublon
and a holon is symmetric, the weights for a doublon site
and a holon site are identical, qne

¼ qnd
ð� qnÞ in Eq. (5),

if ne = nd. In the present work, qn (n = 0, . . . ,4) are inde-
pendently optimized for ‘ = 1, 2, namely, for the nearest
and second (diagonal) neighbors. In the previous studies
[5,6,8,9], q1 = q2 = q3 = q4 = 1 and only q0 is optimized
with the relation to the present notation as q0 = 1 � l.

Regarding a one-body part, we adopt a singlet wave
function in a form of the BCS function with a dx2�y2 -wave
gap [Ud in Eq. (3)]:
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with

~ek ¼ �2ð~tx cos kx þ~ty cos kyÞ � 4~t0 cos kx cos ky

� 2~t00½cosð2kxÞ þ cosð2kyÞ�; ð8Þ
and Dk ¼ eDðcos kx � cos kyÞ. Here, ~f, eD, ~tx, ~ty , ~t0, and ~t00 are
variational parameters to be optimized. ~f corresponds to
the chemical potential in the BCS theory. Although the
parameter eD indicates the magnitude of the d-wave gap, it
does not necessarily mean the realization of SC; in the insu-
lating phase, eD is related to the pseudo gap [10]. In this
study, we take account of a renormalization effect of the
quasi-Fermi surface owing to the electron correlation. In
a previous study for an anisotropic triangular lattice [9],
conspicuous renormalization of ~t0 has been observed in
the insulating regime. In this study, in addition to the con-
tribution of ~t0, we include that of ~t00 in Ud. Furthermore, we
allow for the asymmetry between the nearest-neighbor hop-
pings in x- and y-directions through ~tx and~ty , which may re-
sult in a quasi one-dimensional state [11]. In Fig. 1b, we
summarize the renormalized hopping parameters.

We then have the following 17 variational parameters:
(i) the Gutzwiller projection g, (ii) 10 four-body parameters
on the doublon–holon binding q0, q1, q2, q3, and q4 for
‘ = 1, 2, respectively, and (iii) six one-body parameters in
Ud; ~f, eD, ~tx, ~ty , ~t0, and ~t00. Using optimization VMC tech-
niques, we compute energy expectation values and mini-
mize the energy by searching for the optimal set of
variational parameters above. As pilot calculations, we
have fixed the system size at 10 · 10 with periodic–antipe-
riodic boundary conditions.

3. Results and discussion

To begin with, let us look at the optimized values of the
variational parameters in Wd, which are plotted in Fig. 2.
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Fig. 1. (a) Weight of doublon–holon binding projector qn according to
local electron configuration. Closed [open] circles indicate doubly-occu-
pied sites (doublons) [empty sites (holons)], and open bonds indicate singly
occupied sites or doublons. (b) Hopping terms which are optimized in ~ek in
the variational wave function to allow for the band renormalization effect.
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