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Abstract

Generalization of two-band Ginzburg–Landau (GL) theory to the case of anisotropic mass is presented. The temperature dependence
of the anisotropy parameter of upper critical field cc2ðT Þ ¼ H kc2ðT Þ=H?c2ðT Þ and angular dependence of Hc2(h,T) are calculated using
anisotropic mass two-band Ginzburg–Landau theory of superconductors. It is shown that, with decreasing temperature anisotropy
parameter cc2(T) is increased. Results of our calculations are in agreement with experimental data for single crystal MgB2.
� 2007 Published by Elsevier B.V.
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1. Introduction

Recently discovered [1] superconducting compound
MgB2 has led to a growing amount of both experimental
and theoretical works due to the fact that it holds the high-
est superconducting transition temperature of about
Tc = 39 K for a binary compound of a relatively simple
crystal structure. Calculations of the band structure and
the phonon spectrum predict a double energy gap [2,3], a
larger gap attributed to two-dimensional px�y orbitals (r-
band) and smaller gap attributed to three-dimensional pz

bonding and anti-bonding orbitals (p-band). As a super-
conductor the electron–phonon mechanism of supercon-
ductivity [4] in MgB2 involves giant anharmonicity and
nonlinear electron–phonon coupling [5]. Two-band charac-
teristic of the superconducting state in MgB2 is clearly evi-
dent in the recently performed tunneling measurements
[6,7] and specific heat measurement [8]. Another class of

two-band superconductors are the nonmagnetic borocar-
bides [9] Lu(Y)Ni2B2C.

Magnetic phase diagram for bulk samples of MgB2 and
nonmagnetic borocarbides Lu(Y)Ni2B2C has been of inter-
est to researchers. In contrast to common superconductors,
the upper critical field for bulk samples of MgB2 and boro-
carbides Lu(Y)Ni2B2C have a positive curvature near Tc.
To understand the nature of the unusual behavior at a
microscopic level, a two-band Eliashberg model of super-
conductivity was first proposed by Shulga et al. [9] for
LuNi2B2C and YNi2B2C and recently [10] for MgB2.
Two-band Ginzburg–Landau (GL) model for bulk MgB2

was successfully applied to fit the experimental results of
the temperature dependence of upper and lower critical
fields for MgB2 and nonmagnetic borocarbides [11–13].

Systematic deviation from single-band anisotropic GL
behavior was observed in recent experimental works (see
below) on angular dependence of upper critical field in
MgB2 single crystals. It is necessary to take into account
different characteristics of anisotropy in different bands.
Motivated by these experiments, in this paper we extend
our previous analysis of the two-band effects [11–13] on
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angular dependence of the upper critical field Hc2(h,T). We
also study the temperature dependence of anisotropy
parameter cc2 ¼ H kc2=H?c2 of upper critical field Hc2 in single
crystals of MgB2. Within the two-band GL theory our cal-
culations yield good agreement with experiments on the
angle dependence of Hc2(h,T).

The rest of this paper is organized as follows. In the next
section, we outline the two-band Ginzburg–Landau theory
and derive the expressions for the upper critical field
Hc2(T). In Section 3, we concentrate on the angle depen-
dence of Hc2 and obtain expressions valid in the vicinity
of the critical temperature Tc. Our results for MgB2 are
presented in Section 4 and discussed in the light of avail-
able experimental data.

2. Basic equations

In the presence of two order parameters W1 and W2 in a
superconductor, GL free energy functional F can be writ-
ten as [11–13]
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Z
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In the above equations, mi denotes the effective mass of the
carriers belonging to band i (i = 1, 2), Fi is the free energy
of the ith band, and U0 = hc/2e is the flux quantum. The
coefficient a is given as ai = ci(T � Tci), which depends on
temperature linearly, ci is the proportionality constant,
while the coefficient b is independent of temperature. ~H is
the external magnetic field related to the vector potential
~A by ~H ¼ r�~A. The quantities e and e1 describe inter-
band interaction of two order parameters and their gradi-
ents, respectively. Intergradient interaction term is equal
to zero in the free energy employed by Zhitomirsky and
Dao [14]. However, the intergradient term as introduced
by Doh et al. [15] and Affleck et al. [16] seems to be crucial.
As shown by Askerzade [11–13] presence of this term leads
to measurable effects in the study of Hc1 and Hc2. For in-
stance, the effect of positive curvature in Hc2 is enhanced
due to the inclusion of intergradient interaction term. In
a very recent work [17] it is shown that this term is also
important in the case of inclusion of anisotropic order
parameters.

Minimization of the free energy functional with respect
to the order parameters yields GL equations for two-band
superconductors with the choice ~A ¼ ð0;Hx; 0Þ
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where l2
s ¼ �hc=2eH is the square of the so-called magnetic

length. In the derivation of the GL equations above,
small spatial variation of the gap function is assumed.
Thus, the higher order derivatives are not significant in
the calculation of upper critical field. As shown by Zhito-
mirsky and Dao [14] higher order derivatives become
important for the study of the orientation of the vortex
lattice along c-axis in MgB2 crystals. In this work, sixth
order gradient terms were included to the free energy
functional.

For the calculation of upper critical field Hc2, the system
of Eqs. (4a) and (4b) can be linearized in the vicinity of Tc

and solved using the ansatz [11] W1;2 / e�x2=2l2
s . Equation

that determines the upper critical field in the isotropic case
has the form
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and the solution for Hc2(T) can be written as

H c2ðT Þ ¼
U0

2pn2
; ð7Þ

where the coherence length n of two-band superconductors
is given by the expression
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In the vicinity of the critical temperature Tc, we may
neglect terms of order H2 in Eq. (5) and obtain the approxi-
mate expression for the upper critical field

H c2ðT Þ �
2c
e�h
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We note [11–13] that the critical temperature Tc of a two-
band superconductor as a result of inter-band interaction
is higher than Tc1 and Tc2, i.e., (Tc � Tc1)(Tc � Tc2) =
e2/c1c2.
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