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Abstract

We have obtained experimental evidence for a vortex that mediates between adjacent fluxoid states in a mesoscopic superconducting
ring with nonuniform width. We have obtained information about the path of this vortex. For small fluxoid numbers the vortex crosses
the sample through the narrowest part and for large fluxoid numbers through the widest part. We review our predictions for critical
points. Our results are in agreement with the existent theory.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

It has been known for a long time that the order param-
eter can vanish at certain points for static situations in 1D
multiply connected superconducting circuits, provided that
they enclose a magnetic flux that inhibits superconductivity
[1]. An indirect experimental evidence for this scenario is
provided by [2]. Particular cases in which a node appears
are a loop with an arm [3] and a loop with nonuniform
width [4]. It has also been claimed that a node can appear
in a uniform loop [5].

In Ref. [4], we studied the phase diagram in the temper-
ature–flux plane for a 1D ring with nonuniform cross-sec-
tional area wðhÞ. We defined an eccentricity parameter
b ¼ 2

H
wðhÞ cosðhÞdh=

H
wðhÞdh, where the angle origin is

chosen such that the integral of wðhÞ sinðhÞ is zero. As in
the usual Little–Parks case, the phase diagram is periodic
in the flux U with period U0 ¼ hc=2e and the temperature
for the onset of superconductivity is depressed when
U=U0 is not integer, with the strongest depression being

located at U ¼ U0=2 (modulo U0). We denote by P1 this
point of strongest depression in the temperature–flux
plane. Assuming b� 1 and using a perturbational
approach, we obtained that the temperature of P1 is deter-
mined by n2ðT Þ ¼ 4r2

1D=ð1� jbjÞ, where nðT Þ is the coher-
ence length at temperature T and r1D the radius of the ring.

The most outstanding feature found in [4] is that for
U ¼ U0=2 (modulo U0) the superconducting order parame-
ter has a node, and this node can mediate between states
with different fluxoid numbers, enabling a continuous tran-
sition between them. However, this node exists only for a
limited range of temperature, close to the onset of super-
conductivity: there is a critical point in the ðU; T Þ plane
(which we dub P2), such that below P2 the node does not
appear and the transition becomes discontinuous. P2 is
located along the line U ¼ U0=2 and, using the same pertur-
bational approach mentioned above, its temperature is
determined by n2ðT Þ ¼ 4r2

1D=ð1þ 2 j b jÞ.
About a decade ago some of us extended these results to

multiply connected circuits with finite width. A theoreti-
cally interesting situation is that of a sample with a hole,
which encloses flux within the hole but does not support
magnetic field in the sample itself. If the sample is not
‘‘too” symmetric and it encloses an integer plus half
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number of quantum fluxes, then a nodal line (nodal surface
in 3D) appears, which destroys the connectivity of the
superconducting region [6,7].

We also studied the case of a sample with a hole in a uni-
form field. We still considered a situation close to cylindric
symmetry, close to the onset of superconductivity, and
such that the induced magnetic field has negligible influ-
ence. In this case, the flux enclosed by the sample is not nat-
urally defined, and some arbitrary convention has to be
adopted in its definition. Moreover, the phase diagram is
no longer periodic in the flux. Nevertheless, the phase dia-
gram and the transitions between fluxoid states still exhibit
similar features to the 1D case. For small fluxoid numbers,
the temperature T ðUÞ for the onset of superconductivity
has minima between consecutive fluxoid states n and
nþ 1, and we now denote by P1 the positions of these min-
ima (P1 depends on n). For large fluxoid numbers, T ðUÞ
becomes monotonic.

If b 6¼ 0, there may be a vortex in the sample, which is a
2D version of the node encountered in the case of the 1D
ring. Instead of being present for a sharp flux
U ¼ ðnþ 1=2ÞU0, it is present for a range of fluxes. Since
the presence of the vortex is mainly determined by the flux
enclosed by the hole, rather than by the field at the sample
itself, we dubbed it a ‘‘flux-induced vortex” [8]. The posi-
tion of this vortex is a function of the field and of the geom-
etry of the sample. When the field reaches the lower edge of
the appropriate range, the vortex forms at the outer bound-
ary of the sample; as the field increases, the vortex position
moves towards the inner boundary, until it finally reaches
this boundary and disappears. In this way, the fluxoid
number of the sample can change continuously; while the
vortex is in the sample, the fluxoid numbers are different
at the inner and at the outer boundary.

Flux-induced vortices have several features that are
qualitatively different from those of ‘‘standard” vortices.
Here we will mention two features that seem surprising.
The first is that the critical points P2 still exist (also P2

depends on n), i.e., the passage between n and nþ 1 is con-
tinuous for temperatures above that of P2 and discontinu-
ous for temperatures below it. We found that [9] if the
temperature is fixed at that of P2, then the magnetic suscep-
tibility as a function of the flux diverges quadratically when
P2 is approached.

The critical character of P2 looks surprising because,
unlike the 1D loops that undergo fluxoid transitions for a
sharp enclosed flux, in the present case the transition
occurs over a finite range. The only effect produced by a
small change in the flux is a change in the position of the
vortex and one might therefore expect that the critical
point should be smeared. What happens is that in the vicin-
ity of P2 the ratio between the change in the position of the
vortex and the change in flux diverges. Although no exper-
iments have been intentionally designed to test this feature,
there is indirect experimental evidence for it [10].

Another surprising feature is the following. For transi-
tions between small fluxoid numbers, the vortex crosses

the sample through its narrowest part; however, for large
fluxoid numbers, it crosses through the widest part. The
distinction between ‘‘small” and ‘‘large” fluxoid numbers
depends on the ratio between the typical linewidth and
the typical radius of the sample; for larger ratios, smaller
fluxoid numbers are required. In Refs. [8,9], this feature
was proven using a perturbative approach; however,
numerical studies for boundaries with squared shapes [9]
or eccentric cylinders [11] indicate that this trend is a gen-
eric feature.

In Ref. [9], we obtained explicit expressions for the posi-
tions of P1 and P2 (for arbitrary n). P1 was determined by
first evaluating the temperature for the onset of supercon-
ductivity and then finding the local minima. P2 was deter-
mined by equations that are equivalent to the
requirements that the first and the second derivatives of
the flux with respect to the vortex position vanish. The
expressions for P1 and P2 are somewhat lengthy, and we
refer the interested reader to [9] or [12]. Unlike the 1D case,
the flux at which P2 occurs is not the same as that of P1,
but, at least for small values of n, they are quite close.

Here we report on the first experiment that detects the
existence and trajectory of a vortex during a fluxoid transi-
tion in a mesoscopic asymmetric multiply connected sam-
ple. A more detailed report was published elsewhere [12].

2. Experiment and Interpretation

The local density of states (LDOS) at the Fermi surface
is a decreasing function of the local strength of supercon-
ductivity. The LDOS can be mapped by means of the mul-
tiple-small-tunnel-junction method [13], in which several
tunnel junctions are attached to a mesoscopic supercon-
ductor. The larger the superconducting gap under a given
junction, the larger the voltage required at that junction
in order to pass a predetermined amount of current
(0.3 nA). In particular, the resistance R of a junction is lar-
ger when the region under it is superconducting than the
resistance Rn of the same junction when this region is nor-
mal and, if there is a vortex under the junction, then
R � Rn.

Fig. 1 shows a schematic view of the sample. Two nor-
mal-metal leads cover the narrowest and the widest parts
of a superconducting Al ring with an eccentric hole (outer
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Fig. 1. Schematic view of the sample. Two Cu leads are connected to an
Al asymmetric ring through highly resistive small tunnel junctions (shaded
areas). An Al drain is directly connected to the ring.
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