

Available online at www.sciencedirect.com

PHYSICA G

Physica C 468 (2008) 244-248

www.elsevier.com/locate/physc

Ni substitution effect on structure and superconductivity properties in $\text{Li}_2(\text{Pd}_{1-x}\text{Ni}_x)_3\text{B}$ boride system

Lingwei Li*, Katsuhiko Nishimura, Jyungo Ishiyama, Katsunori Mori

Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan

Received 25 October 2007; received in revised form 26 November 2007; accepted 6 December 2007 Available online 14 December 2007

Abstract

The crystal structure and basic superconductivity parameters in $Li_2(Pd_{1-x}Ni_x)_3B$ are systematically studied by means of X-ray diffraction method, transport properties and magnetization measurement. The limiting solubility of Ni substitution at Pd site was less than 0.2. The lattice parameter *a* and superconducting transition temperature T_c decrease gradually with increasing Ni content *x*. Low critical field H_{c1} and upper critical field H_{c2} were estimated from the isothermal magnetization (*M*–*H*) measurements, and the results showed a decreased tendency with increase in *x*. From $H_{c1}(0)$ and $H_{c2}(0)$, the coherence length $\xi(0)$, penetration depth $\lambda(0)$, Ginzburg–Landau parameter $\kappa(0)$ and thermodynamic critical field $H_c(0)$ were estimated and the results are compared with the related systems. The present results supported that $Li_2(Pd_{1-x}Ni_x)_3B$ system is a conventional type-II superconductor. © 2007 Elsevier B.V. All rights reserved.

PACS: 74.70.Dd; 74.25.Ha

Keywords: Li₂(Pd_{1-x}Ni_x)₃B system; Superconductivity parameters; Solid solution

1. Introduction

The recent discovery of superconductivity below 7–8 K in the ternary lithium borides, Li₂Pd₃B, has attracted a wide attention for its rich physical properties [1,2]. This compound is known to crystallize in a perovskite-like cubic structure (space group of P4₂32) consisting of distorted Pd₆B octahedral [3], which is structurally similar to the superconductor MgCNi₃ [4], and also similar to the high- T_c copper oxide superconductors where the key structure is the oxygen-containing octahedra in some sense. Most likely, this system provides a model example bridging unconventional superconductivity with the classic BCS superconductivity. The theoretical and experimental (NMR measurement and photoemission experiment) results suggested that the superconductivity in Li₂Pd₃B is

due to Pd 4d-electrons and these d-electrons have a strong coulomb correlation, dominating the electronic properties of this system [5,6]. As well as in other superconductors, elemental substitution serves as a useful way to modify the structure and other physical properties of Li₂Pd₃B system to study the underlying mechanism of superconductivity. Badica et al. [7] reported the basic superconducting parameters for pseudo-binary $Li_2(Pd_{1-x}Pt_x)_3B$ (x = 0-1) system. The results suggested that the observed superconductivity was of bulk type and the superconductivity parameters were similar to those of conventional type-II superconductors. Recently, it was indicated that the spintriplet superconducting state was due to the broken inversion symmetry in Li₂Pt₃B by B¹¹ and Pt¹⁹⁵ NMR measurements [8]. This behavior is in contrast to those in the isostructural Li₂Pd₃B which is a spin-singlet superconductor [9]. In addition, Mani et al. [10] reported the lattice parameter and superconductivity transition temperature T_c for Li₂(Pd_{1-x}Ni_x)₃B system. In this paper, to further understand the physical properties of $Li_2(Pd_{1-x}Ni_x)_3B$,

^{*} Corresponding author. Tel.: +81 76 445 6804; fax: +81 76 445 6703. *E-mail address*: wei0396@hotmail.com (L. Li).

^{0921-4534/\$ -} see front matter \odot 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2007.12.003

the lattice parameter, superconducting transition temperature T_c , together with low critical field H_{c1} , upper critical field H_{c2} , coherence length $\xi(0)$, penetration depth $\lambda(0)$, Ginzburg–Landau parameter $\kappa(0)$ and thermodynamic critical field $H_c(0)$ are reported.

2. Experimental

Polycrystalline samples of $Li_2(Pd_{1-x}Ni_x)_3B$ were prepared by a two-step arc melting method under argon atmosphere. In the first step, alloys of $(Pd_{1-x}Ni_x)_3B$ (x = 0-1) were melted from the stoichiometric amounts of high-purity Pd, Ni and B on the water-cooled copper hearth. The total weight loss of this step was negligible, which was less than 0.3%. In the second step, Li was introduced with additional 10-40% to compensate the unavoidable loss of it during arc melting. The second procedure was repeated several times and the chosen samples which have the stoichiometric proportion mostly close to the $Li_2(Pd_{1-x}Ni_x)_3B$ by measuring the weight gain combined with the results of X-ray powder diffraction experiment (XRD). The samples were cut to rectangular for measurements of electrical resistivity, which were made using a standard four-probe technique in the temperature range from 1.8 to 280 K conducted by PPMS system (Quantum Design). The magnetization measurements were done using an SQUID (Quantum Design MPMS) in the temperature range from 2 to 30 K and the DC magnetic fields with a range of 0-6 T. The results are well repeatable.

3. Results and discussion

The XRD spectra were performed on all of the $Li_2(Pd_{1-x}Ni_x)_3B$ samples and the results are shown in Fig. 1. For x < 0.2, no impurity peaks were found within the experimental errors, all samples have single phase with a cubic crystal structure belonging to P4₂32 space group. When $x \ge 0.2$, some Ni₂B and unknown phases were found. It was found to be rather difficult to synthesis the Li₂Ni₃B sample by the present method. So, the limiting solubility of Ni substitution at Pd site in $Li_2(Pd_{1-x}Ni_x)_3B$ system was in the range of 0.15–0.20. The inset of Fig. 1 gives the change of lattice parameter a with x in $Li_2(Pd_{1-x}Ni_x)_3B$ (x = 0 - 0.2) system, which is calculated by the least-square method from the powder XRD data. It can be seen that the lattice parameter a gradually decreases with increasing x, which is similar to that of previously reported $Li_2(Pd_{1-x}Pt_x)_3B$ (x = 0-1) system [7] with the increase of substitution concentration and is consistent with Mani et al.'s [10] reported results.

Fig. 2 shows the temperature dependence of normalized electrical resistivity $\rho(T)/\rho(10 \text{ K})$ and magnetization M(T)/M(10 K) (under field cooling mode) for Li₂(Pd_{1-x}Ni_x)₃B (x = 0-0.2) system from 5 to 9 K. All the samples show a sharp superconducting transition. The superconducting transition temperature T_c was summarized and shown in the inset of Fig. 2. Apart from small differences in values

Fig. 1. Powder XRD patterns for $\text{Li}_2(\text{Pd}_{1-x}\text{Ni}_x)_3\text{B}$ (x = 0-1) system. The inset is the lattice parameter *a* as a function of *x* for $\text{Li}_2(\text{Pd}_{1-x}\text{Ni}_x)_3\text{B}$ (x = 0-0.2) system.

(which can be attributed to different preparation conditions), the regularity of the T_c dependence on x was consistent with Mani et al.'s [10] reported results by temperature dependence AC susceptibility. This fact suggests that the quality of our samples and present results are highly reliable. Generally, $T_{\rm c}$ decrease systematically with increasing Ni substitution content of x. According to Mani et al. [10] the decrease in $T_{\rm c}$ is possibly due to the decrease in the density of state N(0) and the increase in the average characteristic phonon frequency. Mochiku et al. [11] studied the distortion of (Pd, Pt)₆B octahedron which was estimated by the quadratic elongation, $\langle \lambda \rangle$, and the bond angle variation, $\langle \sigma^2 \rangle$, from the results of the refined neutron powder diffraction. They found the distortion of the Pt₆B octahedron was larger than that of Pd₆B octahedron for Li₂(Pd, Pt)₃B and considered that this was the main reason for the Li₂Pt₃B to have lower T_c than that of Li₂Pd₃B. So, for the present Ni substituted $Li_2(Pd_{1-x}Ni_x)_3B$ system, the change of structure which has a close relationship with the distortion of Pd₆B octahedra is another reason for the decrease in T_c. According to Mochiku et al. [11], the (Pd, Pt)-B bond length which could be reflected by the lattice parameters, a, has a close relationship with the distortion of (Pd, Pt)₆B octahedron. Despite from the present results, we cannot estimate the distortion of (Pt, Ni)₆B octahedron precisely, the continuous and obvious decrease in a may indicate that the distortion of $(Pt, Ni)_6 B$ octahe-

Download English Version:

https://daneshyari.com/en/article/1820417

Download Persian Version:

https://daneshyari.com/article/1820417

Daneshyari.com